Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building.

Sci Total Environ

Department of Allergy, Pulmonary and Critical Care Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea. Electronic address:

Published: October 2021

The World Health Organization (WHO) announced that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may spread through aerosols, so-called airborne transmission, especially in a poorly ventilated indoor environment. Ventilation protects the occupants against airborne transmission. Various studies have been performed on the importance of sufficient ventilation for diluting the concentration of virus and lowering any subsequent dose inhaled by the occupants. However, the ventilation situation can be problematic in public buildings and other shared spaces, such as shops, offices, schools, and restaurants. If ventilation is provided by opening windows, the outdoor airflow rate depends strongly on the specific local conditions (opening sizes, relative positions, climatic and weather conditions). This study uses field measurements to analyze the natural ventilation performance in a school building according to the window opening rates, positions, and weather conditions. The ventilation rates were calculated by the tracer gas decay method, and the infection risk was assessed using the Wells-Riley equation. Under cross-ventilation conditions, the average ventilation rates were measured at 6.51 h for 15% window opening, and 11.20 h for 30% window opening. For single-sided ventilation, the ventilation rates were reduced to about 30% of the values from the cross-ventilation cases. The infection probability is less than 1% in all cases when a mask is worn and more than 15% of the windows are open with cross-ventilation. With single-sided ventilation, if the exposure time is less than 1 h, the infection probability can be kept less than 1% with a mask. However, the infection probability exceeds 1% in all cases where exposure time is greater than 2 h, regardless of whether or not a mask is worn. Also, when the air conditioner was operated with a window opening ratio of 15%, power consumption increased by 10.2%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8123370PMC
http://dx.doi.org/10.1016/j.scitotenv.2021.147764DOI Listing

Publication Analysis

Top Keywords

window opening
16
airborne transmission
12
ventilation rates
12
infection probability
12
ventilation
10
natural ventilation
8
school building
8
weather conditions
8
single-sided ventilation
8
mask worn
8

Similar Publications

Ischemic stroke can cause damage to neurons, resulting in neurological dysfunction. The main treatments in the acute phase include intravenous thrombolysis, endovascular stent-assisted vascular thrombectomy and antiplatelet therapy. Due to the limitations of the time window and the risk of early intracranial hemorrhage, finding active treatment plans is crucial for improving therapy.

View Article and Find Full Text PDF

Development of Novel Oral Delivery Systems Using Additive Manufacturing Technologies to Overcome Biopharmaceutical Challenges for Future Targeted Drug Delivery.

Pharmaceutics

December 2024

Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17489 Greifswald, Germany.

The development of targeted drug delivery systems for active pharmaceutical ingredients with narrow absorption windows is crucial for improving their bioavailability. This study proposes a novel 3D-printed expandable drug delivery system designed to precisely administer drugs to the upper small intestine, where absorption is most efficient. The aim was to design, prototype, and evaluate the system's functionality for organ retention and targeted drug release.

View Article and Find Full Text PDF

The Effect of Metal Shielding Layer on Electrostatic Attraction Issue in Glass-Silicon Anodic Bonding.

Micromachines (Basel)

December 2024

Zhejiang Xinsheng Semiconductor Technology, Zhuji 311899, China.

Silicon-glass anode bonding is the key technology in the process of wafer-level packaging for MEMS sensors. During the anodic bonding process, the device may experience adhesion failure due to the influence of electric field forces. A common solution is to add a metal shielding layer between the glass substrate and the device.

View Article and Find Full Text PDF

Transition metal oxides, distinguished by their high theoretical specific capacitance values, inexpensive cost, and low toxicity, have been extensively utilized as electrode materials for high-performance supercapacitors. Nevertheless, their conductivity is generally insufficient to facilitate rapid electron transport at high rates. Therefore, research on bimetallic oxide electrode materials has become a hot spot, especially in the field of micro-supercapacitors (MSC).

View Article and Find Full Text PDF

Emotion recognition is an advanced technology for understanding human behavior and psychological states, with extensive applications for mental health monitoring, human-computer interaction, and affective computing. Based on electroencephalography (EEG), the biomedical signals naturally generated by the brain, this work proposes a resource-efficient multi-entropy fusion method for classifying emotional states. First, Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!