Developability profile framework for lead candidate selection in topical dermatology.

Int J Pharm

GlaxoSmithKline, Dermatology Unit, 1250 South Collegeville Rd, Collegeville, PA 19426, USA. Electronic address:

Published: July 2021

AI Article Synopsis

Article Abstract

The development of molecules for topical dermatology has primarily relied on drug repurposing or on combination therapies, leading to an average of only one New Chemical Entity (NCE) approved per year by the FDA. Topical products offer benefits to patients by enabling localized treatment, while minimizing systemic exposure and the likelihood of adverse events. New therapies are further justified by the burden skin diseases cause on patients' quality of life. Notwithstanding the opportunities, the selection of a topical NCE presents challenges, primarily derived from a target product profile uncommon to oral drugs. Beyond a more stringent range of physicochemical properties, the molecule must display adequate solubility and chemical stability in topical-relevant excipients; must effectively cross the stratum corneum, considerably less permeable than the intestinal epithelium, and elicit a local therapeutic response; and must enable a formulation with robust physical stability. A novel framework intended to de-risk NCE selection is presented and based on four calculated physicochemical properties: molecular weight, clogP, topological polar surface area, and aromatic ring count. The use of topical-relevant solvents to assess the molecule's solubility profile, and a 2-day accelerated chemical stability methodology, are also described as critical steps in early dermal development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120750DOI Listing

Publication Analysis

Top Keywords

selection topical
8
topical dermatology
8
physicochemical properties
8
chemical stability
8
developability profile
4
profile framework
4
framework lead
4
lead candidate
4
candidate selection
4
topical
4

Similar Publications

Psoriasis, a chronic inflammatory skin disease, poses a significant burden on patients' quality of life and healthcare systems. While mild-to-moderate cases are treated topically, usually combined with phototherapy, severe cases require systemic treatment with immunosuppressants, retinoids or biologics. However, all available treatments have drawbacks in terms of efficiency and side effects.

View Article and Find Full Text PDF

Acne vulgaris is a prevalent dermatological condition characterized by comedones, papules, and pustules, with significant physical and psychological implications. Conventional treatments for this condition, including antibiotics and retinoids, face challenges, such as side effects and antibiotic resistance, necessitating alternative treatments. Recent studies show the potential of probiotics to modulate skin microbiome and alleviate acne symptoms.

View Article and Find Full Text PDF

Purpose: To describe a case series of patients with 12 fungal keratitis treated with caspofungin 0.5% eye drops.

Methods: In this study, 12 patients diagnosed with fungal keratitis were treated with topical compounded caspofungin 0.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

In order to disentangle the effects of drugs from placebo responses, several approaches have been used, such as a placebo run-in phase in which only placebo nonresponders, or poor responders, are considered for further randomization to either placebo or active treatment. This study is aimed at investigating the variability of placebo nonresponders obtained through the classical placebo run-in paradigm (group RUN) and through mismatch conditioning (group MIS), as done in our previous study. To do this, we simulated a real clinical trial in the laboratory, in which the placebo responders of both groups were discarded and the remaining nonresponders of both groups RUN and MIS were randomized to either continuing on placebo (groups RUN-P and MIS-P, respectively) or receiving topical 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!