Fetal brain MRI has become an important tool for in utero assessment of brain development and disorders. However, quantitative analysis of fetal brain MRI remains difficult, partially due to the limited tools for automated preprocessing and the lack of normative brain templates. In this paper, we proposed an automated pipeline for fetal brain extraction, super-resolution reconstruction, and fetal brain atlasing to quantitatively map in utero fetal brain development during mid-to-late gestation in a Chinese population. First, we designed a U-net convolutional neural network for automated fetal brain extraction, which achieved an average accuracy of 97%. We then generated a developing fetal brain atlas, using an iterative linear and nonlinear registration approach. Based on the 4D spatiotemporal atlas, we quantified the morphological development of the fetal brain between 23 and 36 weeks of gestation. The proposed pipeline enabled the fully automated volumetric reconstruction for clinically available fetal brain MRI data, and the 4D fetal brain atlas provided normative templates for the quantitative characterization of fetal brain development, especially in the Chinese population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-021-02303-x | DOI Listing |
Neurotoxicol Teratol
January 2025
Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Office of the President, Burroughs Wellcome Fund, Research Triangle Park, Durham, NC, United States. Electronic address:
Exposure to psychosocial stress during pregnancy has been associated with the emergence of neurodevelopmental and neuropsychiatric disorders in offspring. The placenta is known to orchestrate various functions that are essential for normal fetal development, including the brain. It has therefore been postulated that alterations in such functions, and downstream signaling, have the potential to dramatically affect brain developmental trajectories and contribute to adverse neurodevelopmental outcomes.
View Article and Find Full Text PDFIndian J Gastroenterol
January 2025
Department of Gastroenterology, Criticare Asia Multispeciality Hospital and Research Centre, Mumbai, 400 049, India.
Gastrointestinal (GI) symptoms occur frequently in pregnant women, resulting in poor quality of life. These patients frequently require co-management with the obstetrician and a physician/GI specialist. The causation is complex and multifactorial.
View Article and Find Full Text PDFJ Perinat Med
January 2025
Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA.
Objectives: Maternal obesity increases a child's risk of neurodevelopmental impairment. However, little is known about the impact of maternal obesity on fetal brain development.
Methods: We prospectively recruited 20 healthy pregnant women across the range of pre-pregnancy or first-trimester body mass index (BMI) and performed fetal brain magnetic resonance imaging (MRI) of their healthy singleton fetuses.
Prenat Diagn
January 2025
Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
Objective: To apply a network medicine-based approach to analyze the phenome of the prenatal fetal MRI and biometric findings in the Chiari II malformation (CM II) to detect specific patterns and co-occurrences.
Method: A single-center retrospective review of fetal MRI scans obtained in fetuses with CM II was performed. Co-occurrence analysis was utilized to generate a phenotypic comorbidity matrix and visualized by Gephi software.
Pediatr Res
January 2025
Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA.
Background: Prenatally transmitted viruses can cause severe damage to the developing brain. There is unexplained variability in prenatal brain injury and postnatal neurodevelopmental outcomes, suggesting disease modifiers. Of note, prenatal Zika infection can cause a spectrum of neurodevelopmental disorders, including congenital Zika syndrome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!