Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Herein, we report the fabrication of zinc oxide nanowire (ZnO NW) coated carbon fiber (CF) ultra-microelectrodes (UME). ZnO NWs were grown on commercial multifilament CFs through hydrothermal process in a teflon-lined autoclave at 90 °C for 4 h. X-ray diffraction (XRD), Raman and scanning electron microscopy characterizations showed that crystalline and well oriented NW structures were successfully obtained. The fabrication of the pH sensitive UME was carried out by a novel approach which allowed controlling the protruding length of the modified CF surface. The UME was then integrated with a metal-oxide-semiconductor field effect transistor (MOSFET) for the construction of an EGFET pH-microsensor. The present pH microsensor is expected to be useful for localized pH measurement in small volumes such single cell analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac0666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!