Magnetic resonance imaging (MRI)-guided radiotherapy (RT) (MRIgRT) falls outside the scope of existing high energy photon therapy dosimetry protocols, because those protocols do not consider the effects of the magnetic field on detector response and on absorbed dose to water. The aim of this study is to evaluate and demonstrate the traceable measurement of absorbed dose in MRIgRT systems using alanine, made possible by the characterisation of alanine sensitivity to magnetic fields reported previously by Billas(2020115001), in a way which is compatible with existing standards and calibrations available for conventional RT. In this study, alanine is used to transfer absorbed dose to water to MRIgRT systems from a conventional linac. This offers an alternative route for the traceable measurement of absorbed dose to water, one which is independent of the transfer using ionisation chambers. The alanine dosimetry is analysed in combination with measurements with several Farmer-type chambers, PTW 30013 and IBA FC65-G, at six different centres and two different MRIgRT systems (Elekta Unity™ and ViewRay MRIdian™). The results are analysed in terms of the magnetic field correction factors, and in terms of the absorbed dose calibration coefficients for the chambers, determined at each centre. This approach to reference dosimetry in MRIgRT produces good consistency in the results, across the centres visited, at the level of 0.4% (standard deviation). Farmer-type ionisation chamber magnetic field correction factors were determined directly, by comparing calibrations in some MRIgRT systems with and without the magnetic field ramped up, and indirectly, by comparing calibrations in all the MRIgRT systems with calibrations in a conventional linac. Calibration coefficients in the MRIgRT systems were obtained with a standard uncertainty of 1.1% (Elekta Unity™) and 0.9% (ViewRay MRIdian™), for three different chamber orientations with respect to the magnetic field. The values obtained for the magnetic field correction factor in this investigation are consistent with those presented in the summary by de Pooter(202105TR02), and would tend to support the adoption of a magnetic field correction factor which depends on the chamber type, PTW 30013 or IBA FC65-G.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac0680DOI Listing

Publication Analysis

Top Keywords

magnetic field
32
mrigrt systems
24
field correction
20
absorbed dose
20
correction factors
12
dose water
12
magnetic
10
reference dosimetry
8
field
8
ionisation chambers
8

Similar Publications

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.

View Article and Find Full Text PDF

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting various tumor-specific antigens, like interleukin 13 receptor alpha 2 (IL13RA2) and EGFRvIII, have been developed for glioblastoma (GBM). However, limited knowledge of BTE actions derived from studies conducted in immunocompromised animal models impedes progress in the field.

View Article and Find Full Text PDF

Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!