Red light stimulates vasodilation through extracellular vesicle trafficking.

J Photochem Photobiol B

Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA; Cardiovascular Center, Medical College of Wisconsin, USA; Clement J Zablocki VA Medical Center, USA. Electronic address:

Published: July 2021

Red light (670 nm) promotes ex vivo dilation of blood vessels in a nitric oxide (NO) dependent, but eNOS independent manner by secreting a quasi-stable and transferable vasoactive substance with the characteristics of S-nitrosothiols (RSNO) from the endothelium. In the present work we establish that 670 nm light mediated vasodilation occurs in vivo and is physiologically stable. Light exposure depletes intracellular S-nitroso protein while concomitantly increasing extracellular RNSO, suggesting vesicular pathways are involved. Furthermore, we demonstrate this RSNO vasodilator is embedded in extracellular vesicles (EV). The action of red light on vesicular trafficking appears to increase expression of endosome associated membrane protein CD63 in bovine aortic endothelial cells, enhance endosome localization in the endothelium, and induce exit of RSNO containing EVs from murine facialis arteries. We suggest a mechanism by which the concerted actions of 670 nm light initiate formation of RSNO containing EVs which exit the endothelium and trigger relaxation of smooth muscle cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240139PMC
http://dx.doi.org/10.1016/j.jphotobiol.2021.112212DOI Listing

Publication Analysis

Top Keywords

red light
12
670 nm light
8
rsno evs
8
light
5
light stimulates
4
stimulates vasodilation
4
vasodilation extracellular
4
extracellular vesicle
4
vesicle trafficking
4
trafficking red
4

Similar Publications

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Technology and Dementia Preconference.

Alzheimers Dement

December 2024

Yuan Ze University, Taoyuan CIty, Taoyuan, Taiwan.

Background: Effect of dynamic lighting on sleep were studied since 1980's. Traditional light sources were used due to lack of advancement in technology and also researchers assumed illuminance as cause of melatonin suppression. This led researchers to use high illuminance to suppress melatonin at day time.

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design π-extension and donor-acceptor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!