Objective: Genetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components and act through β-cell-specific enhancers. However, their relationship is unclear.

Methods: In this report, we show by genome-wide interrogation of chromatin modifications that ablation of FoxO1 in mature β-cells enriches active Hnf4α enhancers according to a HOMER analysis.

Results: To model the functional significance of this predicted unusual enhancer utilization, we generated single and compound knockouts of FoxO1 and Hnf4α in β-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions as indicated by their responses to sulfonylurea and calcium fluxes. Surprisingly, the defective β-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues was completely reversed in double mutants lacking FoxO1 and Hnf4α. Gene expression analyses revealed distinct epistatic modalities by which the two transcription factors regulate networks associated with reversal of β-cell dysfunction. An antagonistic network regulating glycolysis, including β-cell "disallowed" genes, and a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion.

Conclusions: The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of β-cell dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225970PMC
http://dx.doi.org/10.1016/j.molmet.2021.101256DOI Listing

Publication Analysis

Top Keywords

antagonistic epistasis
8
transcription factors
8
foxo1 hnf4α
8
β-cell dysfunction
8
network regulating
8
β-cell
6
hnf4α
5
foxo1
5
epistasis hnf4α
4
hnf4α foxo1
4

Similar Publications

Epistasis, or interactions in which alleles at one locus modify the fitness effects of alleles at other loci, plays a fundamental role in genetics, protein evolution, and many other areas of biology. Epistasis is typically quantified by computing the deviation from the expected fitness under an additive or multiplicative model using one of several formulae. However, these formulae are not all equivalent.

View Article and Find Full Text PDF

Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants.

Angew Chem Int Ed Engl

September 2024

Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany.

This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively.

View Article and Find Full Text PDF

Evolutionary models of quantitative traits often assume trade-offs between beneficial and detrimental traits, requiring modelers to specify a function linking costs to benefits. The choice of trade-off function is often consequential; functions that assume diminishing returns (accelerating costs) typically lead to single equilibrium genotypes, while decelerating costs often lead to evolutionary branching. Despite their importance, we still lack a strong theoretical foundation to base the choice of trade-off function.

View Article and Find Full Text PDF

Sugar signaling forms the basis of metabolic activities crucial for an organism to perform essential life activities. In plants, sugars like glucose, mediate a wide range of physiological responses ranging from seed germination to cell senescence. This has led to the elucidation of cell signaling pathways involving glucose and its counterparts and the mechanism of how these sugars take control over major hormonal pathways such as auxin, ethylene, abscisic acid and cytokinin in Arabidopsis.

View Article and Find Full Text PDF

Transposable elements (TEs) are selfish genetic elements whose antagonistic interactions with hosts represent a common genetic conflict in eukaryotes. To resolve this conflict, hosts have widely adopted epigenetic silencing that deposits repressive marks at TEs. However, this mechanism is imperfect and fails to fully halt TE replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!