A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antagonistic epistasis of Hnf4α and FoxO1 metabolic networks through enhancer interactions in β-cell function. | LitMetric

Objective: Genetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components and act through β-cell-specific enhancers. However, their relationship is unclear.

Methods: In this report, we show by genome-wide interrogation of chromatin modifications that ablation of FoxO1 in mature β-cells enriches active Hnf4α enhancers according to a HOMER analysis.

Results: To model the functional significance of this predicted unusual enhancer utilization, we generated single and compound knockouts of FoxO1 and Hnf4α in β-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions as indicated by their responses to sulfonylurea and calcium fluxes. Surprisingly, the defective β-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues was completely reversed in double mutants lacking FoxO1 and Hnf4α. Gene expression analyses revealed distinct epistatic modalities by which the two transcription factors regulate networks associated with reversal of β-cell dysfunction. An antagonistic network regulating glycolysis, including β-cell "disallowed" genes, and a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion.

Conclusions: The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of β-cell dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225970PMC
http://dx.doi.org/10.1016/j.molmet.2021.101256DOI Listing

Publication Analysis

Top Keywords

antagonistic epistasis
8
transcription factors
8
foxo1 hnf4α
8
β-cell dysfunction
8
network regulating
8
β-cell
6
hnf4α
5
foxo1
5
epistasis hnf4α
4
hnf4α foxo1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!