Enhancing single-cell bioconversion efficiency by harnessing nanosecond pulsed electric field processing.

Biotechnol Adv

ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland. Electronic address:

Published: December 2021

Nanosecond pulsed electric field (nsPEF) processing is gaining momentum as a physical means for single-cell bioconversion efficiency enhancement. The technology allows biomass yields per substrate (Y) to be leveraged and poses a viable option for stimulating intracellular compound production. NsPEF processing thus resonates with myriad domains spanning the pharmaceutical and medical sectors, as well as food and feed production. The exact working mechanisms underlying nsPEF-based enhancement of bioconversion efficiency, however, remain elusive, and a better understanding would be pivotal for leveraging process control to broaden the application of nsPEF and scale-up industrial implementation. To bridge this gap, the study provides the electrotechnological and metabolic fundamentals of nsPEF processing in the bio-based domain to enable a critical evaluation of pathways underlying the enhancement of single-cell bioconversion efficiency. Evidence suggests that treating cells during the rapid proliferating and thus the early to mid-exponential state of cellular growth is critical to promoting bioconversion efficiency. A combined effect of transient intracellular and sublethal stress induction and effects caused on the plasma membrane level result in an enhancement of cellular bioconversion efficiency. Congruency exists regarding the involvement of transient cytosolic Ca hubs in nsPEF treatment responses, as well as that of reactive oxygen species formation culminating in the onset of cellular response pathways. A distinct assignment of single effects and their contributions to enhancing bioconversion efficiency, however, remains challenging. Current applications of nsPEF processing comprise microalgae, bacteria, and yeast biorefineries, but these endeavors are in their infancies with limitations associated with a lack of understanding of the underlying treatment mechanisms, an incomplete reporting, insufficient characterization, and control of processing parameters. The study aids in fostering the upsurge of nsPEF applications in the bio-based domain by providing a basis to gain a better understanding of cellular mechanisms underlying an nsPEF-based enhancement of cellular bioconversion efficiency and suggests best practice guidelines for nsPEF documentation for improved knowledge transfer. Better understanding and reporting of processes parameters and consequently improved process control could foster industrial-scale nsPEF realization and ultimately aid in perpetuating nsPEF applicability within the bio-based domain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2021.107780DOI Listing

Publication Analysis

Top Keywords

bioconversion efficiency
32
nspef processing
16
single-cell bioconversion
12
better understanding
12
bio-based domain
12
nspef
10
bioconversion
8
efficiency
8
nanosecond pulsed
8
pulsed electric
8

Similar Publications

Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites.

Carbohydr Polym

March 2025

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.

View Article and Find Full Text PDF

Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.

View Article and Find Full Text PDF

Construction of an Efficient -Succinyl--homoserine Producing Cell Factory and Its Application for Coupling Production of -Methionine and Succinic Acid.

J Agric Food Chem

January 2025

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

-Succinyl--homoserine (OSH) is an important C4 platform compound with broad applications. Its green and efficient production is receiving increasing attention. Herein, the OSH producing chassic cell was constructed by deleting the transcriptional negative regulation factor, blocking the OSH consumption pathway, and inhibiting the competitive bypass pathways.

View Article and Find Full Text PDF

Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.

View Article and Find Full Text PDF

The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!