Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222194 | PMC |
http://dx.doi.org/10.1016/j.cub.2021.04.046 | DOI Listing |
Eur J Med Res
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Urology, Peking University First Hospital, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, 100034, China.
Objective: This study aims to investigate the molecular mechanisms by which YWHAG (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma) promotes metastasis in bladder cancer. Specifically, it seeks to elucidate the role of YWHAG in driving cancer cell invasion and its potential as a prognostic marker for bladder cancer progression.
Methods: The expression pattern of YWHAG in both primary and metastatic bladder cancer tissues was analyzed using immunohistochemistry (IHC) to determine its correlation with clinical stage and prognosis in bladder cancer patients.
J Transl Med
December 2024
Gastroenterology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324 JingwuWeiqi Road, Jinan, Shandong, 250021, China.
Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA.
Nutr Metab (Lond)
December 2024
College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
Objective: Impaired skeletal muscle glycogen synthesis contributes to insulin resistance (IR). Aerobic exercise reported to ameliorate IR by augmenting insulin signaling, however the detailed mechanism behind this improvement remains unclear. This study investigated whether aerobic exercise enhances glycogen anabolism and insulin sensitivity via EGR-1/PTP1B signaling pathway in skeletal muscle of rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!