A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural classification of proteins based on the computationally efficient recurrence quantification analysis and horizontal visibility graphs. | LitMetric

Motivation: Protein structural class prediction is one of the most significant problems in bioinformatics, as it has a prominent role in understanding the function and evolution of proteins. Designing a computationally efficient but at the same time accurate prediction method remains a pressing issue, especially for sequences that we cannot obtain a sufficient amount of homologous information from existing protein sequence databases. Several studies demonstrate the potential of utilizing chaos game representation along with time series analysis tools such as recurrence quantification analysis, complex networks, horizontal visibility graphs (HVG) and others. However, the majority of existing works involve a large amount of features and they require an exhaustive, time consuming search of the optimal parameters. To address the aforementioned problems, this work adopts the generalized multidimensional recurrence quantification analysis (GmdRQA) as an efficient tool that enables to process concurrently a multidimensional time series and reduce the number of features. In addition, two data-driven algorithms, namely average mutual information and false nearest neighbors, are utilized to define in a fast yet precise manner the optimal GmdRQA parameters.

Results: The classification accuracy is improved by the combination of GmdRQA with the HVG. Experimental evaluation on a real benchmark dataset demonstrates that our methods achieve similar performance with the state-of-the-art but with a smaller computational cost.

Availability And Implementation: The code to reproduce all the results is available at https://github.com/aretiz/protein_structure_classification/tree/main.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btab407DOI Listing

Publication Analysis

Top Keywords

recurrence quantification
12
quantification analysis
12
computationally efficient
8
horizontal visibility
8
visibility graphs
8
time series
8
structural classification
4
classification proteins
4
proteins based
4
based computationally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!