Antimicrobial and degradable triazolinedione (TAD) crosslinked polypeptide hydrogels.

J Mater Chem B

Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland. and Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences, and Trinity College Dublin, Dublin 2, Ireland and Centre for Research in Medical Devices (CURAM), RCSI University of Medicine and Health Sciences, Dublin 2, and National University or Ireland, Galway, Ireland.

Published: July 2021

Hydrogels are perfectly suited to support cell and tissue growth in advanced tissue engineering applications as well as classical wound treatment scenarios. Ideal hydrogel materials for these applications should be easy to produce, biocompatible, resorbable and antimicrobial. Here we report the fabrication of degradable covalent antimicrobial lysine and tryptophan containing copolypeptide hydrogels, whereby the hydrogel properties can be independently modulated by the copolypeptide monomer ratio and chiral composition. Well-defined statistical copolypeptides comprising different overall molecular weights as well as ratios of l- and d-lysine and tryptophan at ratios of 35 : 15, 70 : 30 and 80 : 20 were obtained by N-carboxyanhydride (NCA) polymerisation and subsequently crosslinked by the selective reaction of bifunctional triazolinedione (TAD) with tryptophan. Real-time rheology was used to monitor the crosslinking reaction recording the fastest increase and overall modulus for copolypeptides with the higher tryptophan ratio. Water uptake of cylindrical hydrogel samples was dependent on crosslinking ratio but found independent of chiral composition, while enzymatic degradation proceeded significantly faster for samples containing more l-amino acids. Antimicrobial activity on a range of hydrogels containing different polypeptide chain lengths, lysine/tryptophan composition and l/d enantiomers was tested against reference laboratory strains of Gram-negative Escherichia coli (E. coli; ATCC25922) and Gram-positive, Staphylococcus aureus (S. aureus; ATCC25923). log reductions of 2.8-3.4 were recorded for the most potent hydrogels. In vitro leachable cytotoxicity tests confirmed non-cytotoxicity as per ISO guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00776aDOI Listing

Publication Analysis

Top Keywords

triazolinedione tad
8
chiral composition
8
hydrogels
5
antimicrobial
4
antimicrobial degradable
4
degradable triazolinedione
4
tad crosslinked
4
crosslinked polypeptide
4
polypeptide hydrogels
4
hydrogels hydrogels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!