Synthesis and characterisation of N-gene targeted NIR-II fluorescent probe for selective localisation of SARS-CoV-2.

Chem Commun (Camb)

Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, Maryland 21201, USA. and Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, Maryland 21250, USA and Bioengineering Department, University of Illinois at Urbana-Champaign, Illinois 61801, USA and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, Maryland 21201, USA.

Published: June 2021

Tracking the viral progression of SARS-CoV-2 in COVID-19 infected body tissues is an emerging need of the current pandemic. Imaging at near infrared second biological window (NIR-II) offers striking benefits over the other technologies to explore deep-tissue information. Here we design, synthesise and characterise a molecular probe that selectively targets the N-gene of SARS-CoV-2. Highly specific antisense oligonucleotides (ASOs) were conjugated to lead sulfide quantum dots using a UV-triggered thiol-ene click chemistry for the recognition of viral RNA. Our ex vivo imaging studies demonstrated that the probe exhibits aggregation induced NIR-II emission only in presence of SARS-CoV-2 RNA which can be attributed to the efficient hybridisation of the ASOs with their target RNA strands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cc01410bDOI Listing

Publication Analysis

Top Keywords

synthesis characterisation
4
characterisation n-gene
4
n-gene targeted
4
targeted nir-ii
4
nir-ii fluorescent
4
fluorescent probe
4
probe selective
4
selective localisation
4
sars-cov-2
4
localisation sars-cov-2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!