Row column addressing (RCA) transducers have the potential to provide volumetric imaging at ultrafast frame rate using a low channel count over a large field of view. In previous works we have shown that vascular imaging of large arteries as well as functional neuroimaging of the rat brain were feasible using RCA orthogonal plane wave imaging (OPW), but these applications required to transmit many plane waves, significantly reducing the frame rate. In this study, we introduce XDoppler imaging, a novel method to increase the performances of RCA flow imaging by taking advantage of the blood spatial decorrelation statistics combined with the limited spatial overlap of the point spread functions (PSF) of the two orthogonal apertures of the RCA transducer. We provide at first a theoretical basis to understand how the correlation operation reduces the sidelobe level. Then, we demonstrate both in vitro and in vivo in the human carotid artery and in the rat brain that XDoppler provides a significant gain in contrast-to-noise ratio (CNR) (between 3 and 6 dB depending on the application) compared to OPW. This improvement also leads to a sensitivity increase in the rat brain as more blood vessels are detected by XDoppler imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2021.3084865DOI Listing

Publication Analysis

Top Keywords

rat brain
12
orthogonal apertures
8
flow imaging
8
frame rate
8
xdoppler imaging
8
imaging
7
xdoppler
4
xdoppler cross-correlation
4
cross-correlation orthogonal
4
apertures blood
4

Similar Publications

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

A creatine efflux transporter in oligodendrocytes.

FEBS J

January 2025

Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.

Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons.

View Article and Find Full Text PDF

Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!