The plant lipidome is highly complex and changes dynamically under the influence of various biotic and abiotic stresses. Targeted analyses based on mass spectrometry enable the detection and characterization of the plant lipidome. It can be analyzed in plant tissues of different developmental stages and from isolated cellular organelles and membranes. Here, we describe a sensitive method to establish the relative abundance of molecular lipid species belonging to three lipid categories: glycerolipids, sphingolipids, and sterol lipids. The method is based on a monophasic lipid extraction and includes the derivatization of a few rare and low-abundant lipid classes. The molecular lipid species are resolved by lipid class-specific reverse-phase liquid chromatography and detected by nanoelectrospray ionization coupled with tandem mass spectrometry. The triple quadrupole analyzer is used for detection with multiple reaction monitoring (MRM). Mass transition lists are constructed based on the knowledge of organism-specific lipid building blocks. They are initially determined by classical lipid analytical methods and then used for combinative assembly of all possible lipid structures. The targeted analysis enables detailed and comprehensive profiling of the entire lipid content and composition of plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1362-7_9 | DOI Listing |
Adv Biotechnol (Singap)
March 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
Post-harvest losses and rapid fruit ripening at room temperature are major challenges in preserving fruit quality. This study aimed to reduce such losses by applying a red carotenoid pigment, bacterioruberin extracted from an sp. The carotenoid was characterized as bacterioruberin and its derivative tetra anhydrous bacterioruberin (λmax 490 nm), and an / value of 675 and 742 (M+ 1H).
View Article and Find Full Text PDFPlant J
January 2025
Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!