Endophytes: the novel sources for plant terpenoid biosynthesis.

Appl Microbiol Biotechnol

Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Published: June 2021

Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future. The four main research interests on endophytes for terpenoid production. A: Isolation of terpenoid-producing endophytes; B: The heterologous expression of endophyte-derived terpenoid synthetic genes; C: Endophytes promoting their hosts' terpenoid production. The blue dashed arrows indicate signal transduction; D: Biotransformation of terpenoids by endophytes or their enzymes. Key points• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8161352PMC
http://dx.doi.org/10.1007/s00253-021-11350-7DOI Listing

Publication Analysis

Top Keywords

endophytes terpenoid
12
terpenoid production
12
endophytes
11
terpenoid
10
terpenoid biosynthesis
8
cell factories
8
terpenoid synthetic
8
synthetic genes
8
will improve
8
terpenoid bioproduction
8

Similar Publications

Objectives: (1) To evaluate the potential of producing huperzine (Hup) and anticholinesterase (AChE) activities of nine native Lycopodiaceae species collected in Vietnam; (2) Isolation, identification and characterization of a novel fungus producing both HupA and HupB isolated from Lycopodium casuarinoides Spring.

Results: All methanolic extracts of nine plants showed AChE inhibition from 8.55 to 71.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Nigrosporinol Sulfoxides A and B, Sulfur-Bridged Heterocyclic Sesquiterpenoids Produced by Cultures of the Fungus .

Org Lett

January 2025

Natural Product Research Unit, Department of Chemistry, and Center of Excellence for Innovation in Chemistry, Faculty of Science Khon Kaen University, Khon Kaen 40002, Thailand.

The sesquiterpenoids nigrosporinol sulfoxides A () and B () have been isolated from cultures of the endophytic fungus harvested from the sunchoke L. collected in Thailand. Nigrosporinol sulfoxides A () and B () have 4/5/5/5/7 heterocyclic skeletons featuring a sulfoxide bridge not previously found in a terpenoid natural product from any living source.

View Article and Find Full Text PDF

Endophytes can be a promising alternative for sustainable agronomic practices. In this study, we report for the first time a root-colonizing fungal strain (Sl27) of the genus Leptobacillium as a tomato (Solanum lycopersicum) endophyte, with no clear homology to any known species. Performed analyses and assays, including morphological and physiological characterization of the fungal isolate, provided insights into the ecological niche and potential agronomical and industrial applications of the fungal isolate.

View Article and Find Full Text PDF

Identification of a drought stress response module in tomato plants commonly induced by fungal endophytes that confer increased drought tolerance.

Plant Mol Biol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.

Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!