Purpose: Surveillance of patients with high-grade glioma (HGG) and identification of disease progression remain a major challenge in neurooncology. This study aimed to develop a support vector machine (SVM) classifier, employing combined longitudinal structural and perfusion MRI studies, to classify between stable disease, pseudoprogression and progressive disease (3-class problem).
Methods: Study participants were separated into two groups: group I (total cohort: 64 patients) with a single DSC time point and group II (19 patients) with longitudinal DSC time points (2-3). We retrospectively analysed 269 structural MRI and 92 dynamic susceptibility contrast perfusion (DSC) MRI scans. The SVM classifier was trained using all available MRI studies for each group. Classification accuracy was assessed for different feature dataset and time point combinations and compared to radiologists' classifications.
Results: SVM classification based on combined perfusion and structural features outperformed radiologists' classification across all groups. For the identification of progressive disease, use of combined features and longitudinal DSC time points improved classification performance (lowest error rate 1.6%). Optimal performance was observed in group II (multiple time points) with SVM sensitivity/specificity/accuracy of 100/91.67/94.7% (first time point analysis) and 85.71/100/94.7% (longitudinal analysis), compared to 60/78/68% and 70/90/84.2% for the respective radiologist classifications. In group I (single time point), the SVM classifier also outperformed radiologists' classifications with sensitivity/specificity/accuracy of 86.49/75.00/81.53% (SVM) compared to 75.7/68.9/73.84% (radiologists).
Conclusion: Our results indicate that utilisation of a machine learning (SVM) classifier based on analysis of longitudinal perfusion time points and combined structural and perfusion features significantly enhances classification outcome (p value= 0.0001).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589799 | PMC |
http://dx.doi.org/10.1007/s00234-021-02719-6 | DOI Listing |
Int J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Front Neurosci
January 2025
Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Purpose: To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo).
Materials And Methods: Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups.
Front Neurosci
January 2025
Center of Excellence in Intelligent Engineering Systems (CEIES), Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Excessive alcohol consumption negatively impacts physical and psychiatric health, lifestyle, and societal interactions. Chronic alcohol abuse alters brain structure, leading to alcohol use disorder (AUD), a condition requiring early diagnosis for effective management. Current diagnostic methods, primarily reliant on subjective questionnaires, could benefit from objective measures.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, TamilNadu India.
Emotion recognition plays a crucial role in brain-computer interfaces (BCI) which helps to identify and classify human emotions as positive, negative, and neutral. Emotion analysis in BCI maintains a substantial perspective in distinct fields such as healthcare, education, gaming, and human-computer interaction. In healthcare, emotion analysis based on electroencephalography (EEG) signals is deployed to provide personalized support for patients with autism or mood disorders.
View Article and Find Full Text PDFSci Rep
January 2025
Imaging Department, Yantaishan Hospital, Yantai, China.
Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) by applying machine learning methods. fMRI indices such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), degree of centrality (DC), and sMRI indices such as gray matter volume (GMV), white matter volume (WMV), and cortical thickness were extracted from each brain region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!