Background: Functional imaging studies have associated dystonia with abnormal activation in motor and sensory brain regions. Commonly used techniques such as functional magnetic resonance imaging impose physical constraints, limiting the experimental paradigms. Functional near-infrared spectroscopy (fNIRS) offers a new noninvasive possibility for investigating cortical areas and the neural correlates of complex motor behaviors in unconstrained settings.

Methods: We compared the cortical brain activation of patients with focal upper-limb dystonia and controls during the writing task under naturalistic conditions using fNIRS. The primary motor cortex (M1), the primary somatosensory cortex (S1), and the supplementary motor area were chosen as regions of interest (ROIs) to assess differences in changes in both oxyhemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) between groups.

Results: Group average activation maps revealed an expected pattern of contralateral recruitment of motor and somatosensory cortices in the control group and a more bilateral pattern of activation in the dystonia group. Between-group comparisons focused on specific ROIs revealed an increased activation of the contralateral M1 and S1 cortices and also of the ipsilateral M1 cortex in patients.

Conclusions: Overactivity of contralateral M1 and S1 in dystonia suggest a reduced specificity of the task-related cortical areas, whereas ipsilateral activation possibly indicates a primary disorder of the motor cortex or an endophenotypic pattern. To our knowledge, this is the first study using fNIRS to assess cortical activity in dystonia during the writing task under natural settings, outlining the potential of this technique for monitoring sensory and motor retraining in dystonia rehabilitation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/15459683211019341DOI Listing

Publication Analysis

Top Keywords

motor cortex
12
motor
8
focal upper-limb
8
upper-limb dystonia
8
cortical areas
8
writing task
8
activation
7
dystonia
7
cortex activation
4
activation writing
4

Similar Publications

Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) are prominent neuroimaging markers of cerebral small vessel disease (CSVD) linked to cognitive decline. Nevertheless, the pathophysiological mechanisms underlying WMH remain unclear.

Objective: This study aimed to assess the structural decoupling index (SDI) as a novel metric for quantifying the brain's hierarchical organization associated with WMH in cognitively normal older adults

Methods: We analyzed data from 112 cognitively normal individuals with varying WMH burdens (43 high WMH burden and 69 low WMH burden).

View Article and Find Full Text PDF

Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.

Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression.

View Article and Find Full Text PDF

BACKGROUND Swallowing is a complex behavior involving the musculoskeletal system and higher-order brain functions. We investigated the effects of different modalities of repetitive transcranial magnetic stimulation (rTMS) on the unaffected hemisphere and observed correlation between suprahyoid muscle activity and cortical activation in unilateral stroke patients when swallowing saliva, based on functional near-infrared spectroscopy (fNIRS). MATERIAL AND METHODS From November 2022 to March 2023, twenty-five patients with unilateral stroke were screened using computed tomography or magnetic resonance imaging and identified via a video fluoroscopic swallow study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!