Circadian rhythms in most living organisms are regulated by light and synchronized to an endogenous biological clock. The circadian clock machinery is also critically involved in regulating and fine-tuning neurodevelopmental processes. Circadian disruption during embryonic development can impair crucial phases of neurodevelopment. This can contribute to neurodevelopmental disorders like autism spectrum disorder (ASD) in the offspring. Increasing evidence from studies showing abnormalities in sleep and melatonin as well as genetic and epigenetic changes in the core elements of the circadian pathway indicate a pivotal role of circadian disruption in ASD. However, the underlying mechanistic basis through which the circadian pathways influence the risk and progression of ASD are yet to be fully discerned. Well-recognized mechanistic pathways in ASD include altered immune-inflammatory, nitro oxidative stress, neurotransmission and synaptic plasticity, and metabolic pathways. Notably, all these pathways are under the control of the circadian clock. It is thus likely that a disrupted circadian clock will affect the functioning of these pathways. Herein, we highlight the possible mechanisms through which aberrations in the circadian clock might affect immune-inflammatory, nitro-oxidative, metabolic pathways, and neurotransmission, thereby driving the neurobiological sequelae leading to ASD.

Download full-text PDF

Source
http://dx.doi.org/10.1515/revneuro-2021-0022DOI Listing

Publication Analysis

Top Keywords

circadian clock
16
circadian
9
autism spectrum
8
spectrum disorder
8
oxidative stress
8
circadian disruption
8
metabolic pathways
8
pathways
7
clock
5
asd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!