Physicochemical properties of hyaline cartilage homogenates were studied by the method of microcalorimetry. Collagen hydrolysates were obtained after homogenization of hyaline cartilages under high pressure conditions at the temperatures that denaturate collagen. Thermodynamic parameters of thermal transition of collagen in cartilage suspension were determined. Enthalpy of thermal transition ΔН decreases in comparison with the control. Thermal transition half-width ΔТ varies with temperature. More denatured and homogeneous samples were obtained at homogenization temperature 80°C. According to spectral studies, particles in the samples obtained at the temperature of 80°C were smaller. The temperature of 80°C is preferred for homogenizing hyaline cartilages and obtaining collagen type II short peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-021-05165-9 | DOI Listing |
J Mol Model
January 2025
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.
View Article and Find Full Text PDFAnal Chem
January 2025
ICGM, Univ. Montpellier, CNRS, ENSCM, 34000 Montpellier, France.
In this contribution, we apply our newly developed ball-milling platform, which combines Raman spectroscopy and thermal (IR) imaging, as well as acoustic and high-speed optical video recordings, to the synthesis and transformation of citric acid-isonicotinamide (1:2) cocrystal polymorphs in transparent PMMA jars. Particularly, we demonstrate how Raman, temperature, acoustic, and video data are complementary and enable detection and connection of chemical and physical events happening during ball-milling in a time-resolved manner. Importantly, we show that the formation of the three cocrystal polymorphs can be detected through acoustic analyses solely.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, University of Lincoln, Brayford Pool, LN6 7TS Lincoln, United Kingdom.
We analyzed the thermal, structural, and dynamic properties of maghemite using classical molecular dynamics, focusing on bulk and nanoparticle systems. We explored their behavior when heated to high temperatures (above the melting point) and during cooling, as well as under thermal cycles ending at intermediate temperatures. Our findings show that in the bulk system, both the tetrahedral and octahedral iron sub-lattices undergo a phase transition prior to melting.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, CAS Key Laboratory of Molecular Recognition and Function, CHINA.
A pair of axially chiral thermally activated delayed fluorescent (TADF) enantiomers, R-TCBN-ImEtPF6 and S-TCBN-ImEtPF6, with intrinsic ionic characteristics were efficiently synthesized by introducing imidazolium hexafluorophosphate to chiral TADF unit. The TADF imidazolium salts exhibited a high photoluminescence quantum yield (PLQY) of up to 92%, a small singlet-triplet energy gap (∆EST) of 0.04 eV, as well as reversible redox properties.
View Article and Find Full Text PDFACS Omega
January 2025
Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.
Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!