Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain.

Tree Physiol

Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, c/ José Antonio Novais, 10, Madrid 28040, Spain.

Published: December 2021

Rear-edge tree populations forming the equatorward limit of distribution of temperate species are assumed to be more adapted to climate variability than central (core) populations. However, climate is expected to become more variable and the frequency of climate extremes is forecasted to increase. Climatic extreme events such as heat waves, dry spells and spring frosts could become more frequent, and negatively impact and jeopardize rear-edge stands. To evaluate these ideas, we analyzed the growth response of trees to successive spring frosts in a mixed forest, where two temperate deciduous species, Fagus sylvatica L. (European beech) and Quercus petraea (Matt.) Liebl. (sessile oak), both at their southernmost edge, coexist with the Mediterranean Quercus pyrenaica Willd. (Pyrenean oak). Growth reductions in spring-frost years ranked across species as F. sylvatica > Q. petraea > Q. pyrenaica. Leaf flushing occurred earlier in F. sylvatica and later in Q. pyrenaica, suggesting that leaf phenology was a strong determinant of spring frost damage and stem growth reduction. The frost impact depended on prior climate conditions, since warmer days prior to frost occurrence predisposed to frost damage. Autumn Normalized Difference Vegetation Index data showed delayed leaf senescence in spring-frost years and subsequent years as compared with pre-frost years. In the studied forest, the negative impact of spring frosts on Q. petraea and especially on F. sylvatica growth, was considerably higher than the impacts due to drought. The succession of four spring frosts in the last two decades determined a trend of decreasing resistance of radial growth to frosts in F. sylvatica. The increased frequency of spring frosts might prevent the expansion and persistence of F. sylvatica in this rear-edge Mediterranean population.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpab076DOI Listing

Publication Analysis

Top Keywords

spring frosts
24
successive spring
8
leaf phenology
8
radial growth
8
spring-frost years
8
frost damage
8
spring
7
frosts
7
growth
6
sylvatica
6

Similar Publications

White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.

View Article and Find Full Text PDF

Global warming changes flowering times of many plant species, with potential impacts on frost damage and their synchronization with pollinator activity. These effects can have severe impacts on plant fitness, yet we know little about how frequently they occur and the extent of damage they cause. We addressed this topic in a thermophilic orchid with a highly specific pollination mechanism, the Small Spider Orchid, RchB, in six populations in Northern Switzerland.

View Article and Find Full Text PDF

Pipelines are the primary mode of oil and gas transport in cold regions. Differential frost heaving of frozen and non-frozen soil masses can damage such pipelines, posing economic and environmental risks. The present study investigates the mechanical behaviors of buried pipelines under differential frost heaving forces.

View Article and Find Full Text PDF

Ribes janczewskii is a rare and valuable plant known for its resistance to spring frosts, pests, and diseases. It is used in hybridization to develop resistant currant varieties but is on the verge of extinction, listed in Kazakhstan Red Book. This study developed a micropropagation and slow-growth storage protocol for conservation.

View Article and Find Full Text PDF

In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!