Industrial and household products, such as paints, inks and cosmetics usually consist of mixtures of macromolecules that are disperse in composition, in size and in monomer sequence. Identifying structure-function relationships for these systems is complicated, as particular macromolecular components cannot be investigated individually. For this study, we have addressed this issue, and have synthesized a series of five sequence-defined polyurethanes (PUs): one neutral-hydrophobic, one single-charged hydrophilic, one single-charged hydrophobic and two double-charged amphiphilic PUs (one symmetric and one asymmetric). These novel precision PUs - that were prepared by using stepwise coupling-deprotection synthetic protocols - have a defined composition, size and monomer sequence, where the chosen sequences were inspired by those that are abundantly formed in the production of industrial waterborne PU dispersions. By performing dynamic light scattering experiments (DLS), self-consistent field (SCF) computations and cryogenic transmission electron microscopy (cryo-TEM), we have elucidated the behavior in aqueous solution of the individual precision PUs, as well as of binary and ternary mixtures of the PU sequences. The double-charged PU sequences ('hosts') were sufficiently amphiphilic to yield single-component micellar solutions, whereas the two more hydrophobic sequences did not micellize on their own, and gave precipitates or ill-defined larger aggregates. Both the neutral-hydrophobic PU and the hydrophilic single-charged PU were successfully incorporated in the host micelles as guests, respectively increasing and reducing the micelle radius upon incorporation. SCF computations indicated that double-charged symmetric PUs stretch whilst double-charged asymmetric PUs are expelled from the core to accommodate hydrophobic PU guests within the micelles. For the ternary mixture of the double-charged symmetric and asymmetric hosts and the neutral-hydrophobic guest we have found an improved colloidal stability, as compared to those for binary mixtures of either host and hydrophobic guest. In another ternary mixture of precision PUs, with all three components not capable of forming micelles on their own, we see that the ensemble of molecules produces stable micellar solutions. Taken together, we find that the interplay between PU-molecules in aqueous dispersions promotes the formation of stable micellar hydrocolloids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8129887 | PMC |
http://dx.doi.org/10.1039/d1py00079a | DOI Listing |
Front Immunol
December 2024
Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
Background: Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition that affects hair follicles in areas with apocrine sweat glands, such as the underarms, groin, and buttocks. The pathogenesis of HS is not fully understood, but considering the key role played by the biological clock in the control of immune/inflammatory processes the derangement of circadian and ultradian pathways could be hypothesized.
Methods: We analyzed genome-wide DNA methylation patterns in peripheral blood from 24 HS cases and 24 controls using the Infinium HumanMethylation450 BeadChip array (Illumina), followed by bioinformatics and statistical analyses.
Immunity
December 2024
The Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA. Electronic address:
Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disease characterized by keratinized epithelial tunnels that grow deeply into the dermis. Here, we examined the immune microenvironment within human HS lesions. Multi-omics profiling and multiplexed imaging identified tertiary lymphoid structures (TLSs) near HS tunnels.
View Article and Find Full Text PDFSpine J
November 2024
Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Shandong, China. Electronic address:
Background Context: The etiological diagnosis of pyogenic spinal infection is crucial for its precise antibiotic treatment. Traditional methods of detection are often slow and ineffective. In recent times, metagenomic next-generation sequencing (mNGS) has revolutionized pathogen detection, offering a more effective approach to disease management.
View Article and Find Full Text PDFFr J Urol
November 2024
Department of Urology and Renal Transplantation, Assistance publique-Hôpitaux de Marseille, Hôpital de la Conception, Aix-Marseille Université, Marseille, France.
Microb Pathog
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!