Background: SARS, MERS, and COVID-19 share similar characteristics. For instance, the genetic homology of SARS-CoV-2 compared to SARS-CoV and MERS-CoV is 80% and 50%, respectively, which may cause similar clinical features. Moreover, uncontrolled release of proinflammatory mediators (also called a cytokine storm) by activated immune cells in SARS, MERS, and COVID-19 patients leads to severe phenotype development.
Aim: This systematic review and meta-analysis aimed to evaluate the inflammatory cytokine profile associated with three strains of severe human coronavirus diseases (MERS-CoV, SARS-CoV, and SARS-CoV-2).
Method: The PubMed, Embase, and Cochrane Library databases were searched for studies published until July 2020. Randomized and observational studies reporting the inflammatory cytokines associated with severe and non-severe human coronavirus diseases, including MERS-CoV, SARS-CoV, and SARS-CoV-2, were included. Two reviewers independently screened articles, extracted data, and assessed the quality of the included studies. Meta-analysis was performed using a random-effects model with a 95% confidence interval to estimate the pooled mean of inflammatory biomarkers.
Results: A high level of circulating IL-6 could be associated with the severity of infection of the three coronavirus strains. TNF, IL-10, and IL-8 are associated with the severity of COVID-19. Increased circulating levels of CXCL10/IP10 and CCL2/MCP-1 might also be related to the severity of MERS.
Conclusion: This study suggests that the immune response and immunopathology in the three severe human coronavirus strains are somewhat similar. The findings highlight that nearly all studies reporting severe cases of SARS, MERS, and COVID-19 have been associated with elevated levels of IL-6. This could be used as a potential therapeutic target to improve patients' outcomes in severe cases.
Systematic Review Registration: PROSPERO registration 94 number: CRD42020209931.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8147689 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.666223 | DOI Listing |
J Med Chem
January 2025
Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany. Electronic address:
The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD).
View Article and Find Full Text PDFVirology
January 2025
Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; International Joint Laboratory Ecosystem, Biological Diversity, Habitat Modifications, And Risk of Emerging Pathogens and Diseases in México (ELDORADO), UNAM-IRD, Mexico.
Bats, which play a vital role in maintaining ecosystems, are also known as natural reservoirs of coronaviruses (CoVs), thus have raised concerns about their potential transmission to humans, particularly in light of the emergence of MERS-CoV, SARS-CoV, and SARS-CoV-2. The increasing impact of human activities and ecosystem modifications is reshaping bat community structure and ecology, heightening the risk of the emergence of potential epidemics. Therefore, continuous monitoring of these viruses in bats is necessary.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar, Tamil Nadu, 626126, India.
The novel coronavirus that caused the epidemic and pandemic resulting in the acute respiratory illness known as coronavirus disease 2019 (COVID-19) has plagued the world. This is unlike other coronavirus outbreaks that have occurred in the past, such as Middle East respiratory syndrome (MERS) or severe acute respiratory syndrome (SARS). COVID-19 has spread more quickly and posed special challenges due to the lack of appropriate treatments and vaccines.
View Article and Find Full Text PDFACS Synth Biol
January 2025
KAUST Catalysis Center (KCC), Division of Physical Sciences & Engineering, King Abdullah University of Science and Technology, KAUST, Thuwal 23955, Kingdom of Saudi Arabia.
The COVID-19 pandemic has highlighted the critical need for pathogen detection methods that offer both low detection limits and rapid results. Despite advancements in simplifying and enhancing nucleic acid amplification techniques, immunochemical methods remain the preferred methods for mass testing. These methods eliminate the need for specialized laboratories and highly skilled personnel, making home testing feasible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!