This study aimed to investigate the value of amplitude of low-frequency fluctuation (ALFF)-based histogram analysis in the diagnosis of Parkinson's disease (PD) and to investigate the regions of the most important discriminative features and their contribution to classification discrimination. Patients with PD ( = 59) and healthy controls (HCs; = 41) were identified and divided into a primary set (80 cases, including 48 patients with PD and 32 HCs) and a validation set (20 cases, including 11 patients with PD and nine HCs). The Automated Anatomical Labeling (AAL) 116 atlas was used to extract the histogram features of the regions of interest in the brain. Machine learning methods were used in the primary set for data dimensionality reduction, feature selection, model construction, and model performance evaluation. The model performance was further validated in the validation set. After feature data dimension reduction and feature selection, 23 of a total of 1,276 features were entered in the model. The brain regions of the selected features included the frontal, temporal, parietal, occipital, and limbic lobes, as well as the cerebellum and the thalamus. In the primary set, the area under the curve (AUC) of the model was 0.974, the sensitivity was 93.8%, the specificity was 90.6%, and the accuracy was 93.8%. In the validation set, the AUC, sensitivity, specificity, and accuracy were 0.980, 90.9%, 88.9%, and 90.0%, respectively. ALFF-based histogram analysis can be used to classify patients with PD and HCs and to effectively identify abnormal brain function regions in PD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8144304PMC
http://dx.doi.org/10.3389/fnagi.2021.624731DOI Listing

Publication Analysis

Top Keywords

histogram analysis
12
primary set
12
patients hcs
12
validation set
12
diagnosis parkinson's
8
parkinson's disease
8
alff-based histogram
8
set cases
8
cases including
8
including patients
8

Similar Publications

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Steganography is used to hide sensitive types of data including images, audio, text, and videos in an invisible way so that no one can detect it. Image-based steganography is a technique that uses images as a cover media for hiding and transmitting sensitive information over the internet. However, image-based steganography is a challenging task due to transparency, security, computational efficiency, tamper protection, payload, etc.

View Article and Find Full Text PDF

Objective: Intensive medical management has been recommended for ischemic stroke of intracranial atherosclerosis (ICAS), but 9.4-15% probability of recurrent stroke remains an inevitable reality. The characteristics of high-risk intracranial plaque that contribute to stroke recurrence after intensive therapy are unclear.

View Article and Find Full Text PDF

Azo dyes, such as tartrazine and sunset yellow, are widely used as affordable and stable food colorants. Accurate quantification is crucial in foods for regulatory monitoring to ensure compliance with safety standards and minimize health risks. This study developed a low-cost and eco-friendly method using digital images and chemometrics for the simultaneous determination of these dyes in food samples.

View Article and Find Full Text PDF

Purpose: To assess and compare the diagnostic efficiency of histogram analysis of monochromatic and iodine images derived from spectral CT in predicting Ki-67 expression in gastric gastrointestinal stromal tumors (gGIST).

Methods: Sixty-five patients with gGIST who underwent spectral CT were divided into a low-level Ki-67 expression group (LEG, Ki-67 < 10%, n = 33) and a high-level Ki-67 expression group (HEG, Ki-67 ≥ 10%, n = 32). Conventional CT features were extracted and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!