Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world, which results in huge economic losses. The frequency and duration of flooding is predicted to increase in near future as a result of global climate change. Breeding of flooding tolerance in rice is a challenging task because of the complexity of the component traits, screening technique, environmental factors and genetic interactions. A great progress has been made during last two decades to find out the flooding tolerance mechanism in rice. An important breakthrough in submergence research was achieved by the identification of major quantitative trait locus (QTL) in rice chromosomes that acts as the primary contributor for tolerance. This enabled the use of marker-assisted backcrossing (MABC) to transfer QTL into popular varieties which showed yield advantages in flood prone areas. However, varieties are not always tolerant to stagnant flooding and flooding during germination stage. So, gene pyramiding approach can be used by combining several important traits to develop new breeding rice lines that confer tolerances to different types of flooding. This review highlights the important germplasm/genetic resources of rice to different types of flooding stress. A brief discussion on the genes and genetic mechanism in rice exhibited to different types of flooding tolerance was discussed for the development of flood tolerant rice variety. Further research on developing multiple stresses tolerant rice can be achieved by combining with other tolerance traits/genes for wider adaptation in the rain-fed rice ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142345PMC
http://dx.doi.org/10.2174/1389202922666210114104140DOI Listing

Publication Analysis

Top Keywords

flooding tolerance
16
types flooding
12
rice
11
flooding
10
genes genetic
8
tolerance rice
8
mechanism rice
8
tolerant rice
8
tolerance
6
advances genetic
4

Similar Publications

Preparation and characterization of the octenyl succinic anhydride (OSA) modified sphingan WL gum as novel biopolymeric surfactants.

Int J Biol Macromol

January 2025

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:

Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.

View Article and Find Full Text PDF

Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).

View Article and Find Full Text PDF

Premise: Five C grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.

Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.

View Article and Find Full Text PDF

Response of to Flooding with Physical Flow.

Plants (Basel)

December 2024

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan.

Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of exposed to submergence or flooding with physical flow.

View Article and Find Full Text PDF

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!