AI Article Synopsis

Article Abstract

Background: Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in the Kingdom of Saudi Arabia, is associated with a high mortality rate.

Aim: To determine the effect of MERS-CoV on the immune response in infected patients and investigate cytokine production in the A549 epithelial cell line in response to a recombinant MERS-CoV spike protein (rSP) in the presence or absence of anti-dipeptidyl peptidase 4 (DPP4) antibody (3 independent experiments). Cytokine levels were measured using a cytokine ELISA array.

Methods: A Bio-Plex multiplex assay and cytokine ELISA were used in our study to measure the cytokine levels.

Results: Comparative analysis of MERS-CoV-infected patients (4 samples) and noninfected healthy controls (HCs) (5 samples) showed that serum levels of the following cytokines and chemokines were significantly higher in MERS-CoV patients than in the HCs (*p < 0.05): interferon (IFN)-α2 (43.4 vs 5.4), IFN-β (17.7 vs 6.2), IFN-γ (43.4 vs 9.7), interleukin (IL)-8 (13.7 vs 0), IL-2 (11.2 vs 3), IL-27p28 (57.8 vs 13.8), and IL-35 (167.5 vs 87.5).

Discussion: Our results revealed that MERS-CoV infection induced a slight increase in IFN levels but triggered a more pronounced increase in expression of the regulatory cytokines IL-27 and IL-35. A recombinant version of the full-length MERS-CoV spike protein increased the expression of IL-8 (160 pg/mL), IL-2 (100 pg/mL) and IL-12 (65 pg/mL) in A549 lung epithelial cells compared to that in the unstimulated control cells. The presence of anti-DPP4 antibody did not affect cytokine suppression or induction in A549 cells in vitro but decreased the level of IL-8 from 160 pg/mL to 65 pg/mL.

Conclusion: MERS-CoV can decrease IFN levels to interfere with the IFN pathway and enhance the production of regulatory cytokines. Inhibition of the increases in IL-27 and IL-35 may contribute to halting MERS-CoV in the early stage of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149276PMC
http://dx.doi.org/10.2147/JIR.S312337DOI Listing

Publication Analysis

Top Keywords

mers-cov
9
middle east
8
east respiratory
8
respiratory syndrome
8
syndrome coronavirus
8
coronavirus mers-cov
8
mers-cov infection
8
mers-cov spike
8
spike protein
8
cytokine elisa
8

Similar Publications

A new pathogen pattern of acute respiratory tract infections in primary care after COVID-19 pandemic: a multi-center study in southern China.

BMC Infect Dis

January 2025

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518001, China.

Background: After the coronavirus disease 2019 (COVID-19) pandemic, no studies on bacterial and atypical pathogens were conducted in primary care. We aimed to describe the etiological composition of acute respiratory tract infections (ARTIs) presenting to primary care with limited resources after the pandemic.

Methods: 1958 adult patients with ARTIs from 17 primary care clinics were recruited prospectively from January 2024 to March 2024.

View Article and Find Full Text PDF

Camel milk is a neglected source of brucellosis among rural Arab communities.

Nat Commun

January 2025

Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK.

The World Health Organization describes brucellosis as one of the world's leading zoonotic diseases, with the Middle East a global hotspot. Brucella melitensis is endemic among livestock populations in the region, with zoonotic transmission occurring via consumption of raw milk, amongst other routes. Control is largely via vaccination of small ruminant and cattle populations.

View Article and Find Full Text PDF

We identified seven distinct coronaviruses (CoVs) in bats from Brazil, classified into 229E-related (Alpha-CoV), Nobecovirus, Sarbecovirus, and Merbecovirus (Beta-CoV), including one closely related to MERS-like CoV with 82.8% genome coverage. To accomplish this, we screened 423 oral and rectal swabs from 16 different bat species using molecular assays, RNA sequencing, and evolutionary analysis.

View Article and Find Full Text PDF

MERS is a respiratory disease caused by MERS-CoV. Multiple outbreaks have been reported, and the virus co-circulates with SARS-CoV-2. The long-term (> 6 years) cellular and humoral immune responses to MERS-CoV and their potential cross-reactivity to SARS-CoV-2 and its variants are unknown.

View Article and Find Full Text PDF

Rapid Generation of Reverse Genetics Systems for Coronavirus Research and High-Throughput Antiviral Screening Using Gibson DNA Assembly.

J Med Virol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!