Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152300 | PMC |
http://dx.doi.org/10.1016/j.icarus.2020.113634 | DOI Listing |
J Chromatogr A
October 2023
LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, Guyancourt 78280, France.
Among future space missions, national aeronautics and space administration (NASA) selected two of them to analyze the diversity in organic content within Martian and Titan soil samples using a gas chromatograph - mass spectrometer (GC-MS) instrument. The Dragonfly space mission is planned to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for years. One of the main goals of this mission is to understand the past and actual abundant prebiotic chemistry on Titan, which is not well characterized yet.
View Article and Find Full Text PDFIcarus
May 2020
Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America.
Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters.
View Article and Find Full Text PDFJ Geophys Res Planets
August 2020
INAF Osservatorio Astronomico di Capodimonte Napoli Italy.
Aeolian megaripples, with 5- to 50-m spacing, are abundant on the surface of Mars. These features were repeatedly targeted by high-resolution orbital images, but they have never been observed to move. Thus, aeolian megaripples (especially the bright-toned ones often referred as Transverse Aeolian Ridges-TARs) have been interpreted as relict features of a past climate.
View Article and Find Full Text PDFAstrobiology
February 2020
Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany.
After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (three for Mars2020 mission and five for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions.
View Article and Find Full Text PDFGeol Soc Am Bull
May 2019
SETI & NASA-Ames Research Center, Mountain View, California, USA.
The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!