Mammalian species carry ~100 loss-of-function variants per individual, where ~1-5 of these impact essential genes and cause embryonic lethality or severe disease when homozygous. The functions of the remainder are more difficult to resolve, although the assumption is that these variants impact fitness in less manifest ways. Here we report one of the largest sequence-resolution screens of cattle to date, targeting discovery and validation of non-additive effects in 130,725 animals. We highlight six novel recessive loci with impacts generally exceeding the largest-effect variants identified from additive genome-wide association studies, presenting analogs of human diseases and hitherto-unrecognized disorders. These loci present compelling missense (PLCD4, MTRF1 and DPF2), premature stop (MUS81) and splice-disrupting (GALNT2 and FGD4) mutations, together explaining substantial proportions of inbreeding depression. These results demonstrate that the frequency distribution of deleterious alleles segregating in selected species can afford sufficient power to directly map novel disorders, presenting selection opportunities to minimize the incidence of genetic disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00872-5DOI Listing

Publication Analysis

Top Keywords

non-additive association
4
association analysis
4
analysis proxy
4
proxy phenotypes
4
phenotypes identifies
4
identifies novel
4
novel cattle
4
cattle syndromes
4
syndromes mammalian
4
mammalian species
4

Similar Publications

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Potassium channels mediate nitric oxide-induced vasorelaxation in arteries supplying colon cancer.

Prostaglandins Other Lipid Mediat

December 2024

Department of Biology, College of Science, University of Zakho, Duhok, Kurdistan Region, Iraq; Department of Biology, College of Science, University of Nawroz, Duhok, Kurdistan Region, Iraq.

Introduction: Aberrant vascular function and cancer growth are closely related, with nitric oxide (NO) being a key factor in vascular tone regulation. This study provides Novel insights into the distinctive mechanisms underlying cancer-associated vascular dysfunction by investigating the involvement of potassium (K) channels in NO-mediated vasorelaxation within arteries supplying colon cancer.

Methods: Arterial segments from colon cancer patients were isolated and sectioned into rings, these rings were mounted in an organ bath filled with Krebs' solution and maintained at 37°C.

View Article and Find Full Text PDF

Influence of anti-fibrillation TNGQ peptide and rutin combination on β-cell cytoprotective effects against IAPP-induced cell death and oxidative stress.

Biochem Biophys Res Commun

December 2024

School of Nutrition Sciences, Health Sciences, University of Ottawa, Ottawa, K1H 8M5, Canada; Department of Chemistry and Biomolecular Sciences, Science, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada; University Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada. Electronic address:

Article Synopsis
  • Type 2 diabetes is linked to IAPP fibrillation, which damages pancreatic β-cells through oxidative stress and membrane disruption.
  • Rutin, a plant polyphenol, and certain bioactive peptides (TNGQ, MANT, YMSV) show promise as inhibitors for IAPP fibrillation.
  • The study found that combining rutin with TNGQ significantly reduced IAPP fibrillation and related cell toxicity, suggesting potential for creating new anti-diabetic nutraceuticals.
View Article and Find Full Text PDF

Enhancing genomic association studies in slash pine through close-range UAV-based morphological phenotyping.

For Res (Fayettev)

July 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

In forestry genetics and industry, tree morphological traits such as height, crown size, and shape are critical for understanding growth dynamics and productivity. Traditional methods for measuring these traits are limited in efficiency, scalability, and accuracy, posing challenges for large-scale forest assessments. This study focuses on integrating unmanned aerial vehicle (UAV) technology with GWAS to improve genomic association studies in slash pine ().

View Article and Find Full Text PDF

Effect of non-additive mixing on entropic bonding strength and phase behavior of binary nanocrystal superlattices.

J Chem Phys

November 2024

F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA.

Non-additive mixing plays a key role in the properties of molecular fluids and solids. In this work, the potential for athermal order-disorder phase transitions is explored in non-additive binary colloidal nanoparticles that form substitutionally ordered compounds, namely, for equimolar mixtures of octahedra + spheres, which form a CsCl lattice compound, and cubes + spheres, which form a NaCl crystal. Monte Carlo simulations that target phase coexistence conditions were used to examine the effect on compound formation of varying degrees of negative non-additivity created by component size asymmetry and by size-tunable indentations in the polyhedra's facets, intended to allow the nestling of neighboring spheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!