The forces that are developed when manipulating objects generate sensory cues that inform the central nervous system about the qualities of the object's surface and the status of the hand/object interaction. Afferent responses to frictional transients or slips have been studied in the context of lifting/holding tasks. Here, we used microneurography and an innovative tactile stimulator, the Stimtac, to modulate both the friction level of a surface, without changing the surface or adding a lubricant, and, to generate the frictional transients in a pure and net fashion. In three protocols, we manipulated: the frictional transients, the friction levels, the rise times, the alternation of phases of decrease or increase in friction to emulate grating-like stimuli. Afferent responses were recorded in 2 FAIs, 1 FAII, 2 SAIs and 3 SAIIs from the median nerve of human participants. Independently of the unit type, we observed that: single spikes were generated time-locked to the frictional transients, and that reducing the friction level reduced the number of spikes during the stable phase of the stimulation. Our results suggest that those frictional cues are encoded in all the unit types and emphasize the possibility to use the Stimtac device to control mechanoreceptor firing with high temporal precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160007PMC
http://dx.doi.org/10.1038/s41598-021-90533-8DOI Listing

Publication Analysis

Top Keywords

frictional transients
16
afferent responses
8
friction level
8
friction
5
frictional
5
human low-threshold
4
low-threshold mechanoafferent
4
mechanoafferent responses
4
responses pure
4
pure changes
4

Similar Publications

A task as simple as holding a cup between your fingers generates complex motor commands to finely regulate the forces applied by muscles. These fine force adjustments ensure the stability and integrity of the object by preventing it from slipping out of grip during manipulation and by reacting to perturbations. To do so, our sensorimotor system constantly monitors tactile and proprioceptive information about the force object exerts on fingertips and the friction of the surfaces to determine the optimal grip force.

View Article and Find Full Text PDF

The reliability and longevity of the guiding shoe are crucial for the proper functioning of coal mining machines. The heavy wear of the sliding surface under thermal stress coupling is the primary factor influencing the service life of the guiding shoe. To reveal the heat flow distribution patterns and the thermo-stress coupling mechanisms of the guiding surface, a thermo-mechanical coupling model of the guiding shoe and the pin row is established.

View Article and Find Full Text PDF

Whether Earth materials exhibit frictional creep or catastrophic failure is a crucial but unresolved problem in predicting landslide and earthquake hazards. Here, we show that field-scale observations of sliding velocity and pore water pressure at two creeping landslides are explained by velocity-strengthening friction, in close agreement with laboratory measurements on similar materials. This suggests that the rate-strengthening friction commonly measured in clay-rich materials may govern episodic slow slip in landslides, in addition to tectonic faults.

View Article and Find Full Text PDF

Compressible turbulent plane channel DNS datasets.

Data Brief

August 2024

Sorbonne Université, Faculty of Science and Engineering, 4 place Jussieu, 75005 Paris, France.

The database contains detailed statistics of compressible turbulent plane channel (TPC) flow, obtained from direct numerical simulation (DNS), with a very-high-order massively parallel solver of the compressible Navier-Stokes equations. It contains datasets for 25 different flow conditions determined by the corresponding HCB friction Reynolds number and centerline Mach number, covering the ranges and . All calculations are for strictly isothermal wall conditions at temperature in a medium-size (MB) computational box ( where is the channel-height).

View Article and Find Full Text PDF

Elasto-plastic friction modeling toward reconstructing measured bowed-string transients.

J Acoust Soc Am

August 2024

Department of Music Acoustics-Wiener Klangstil (IWK), University of Music and Performing Arts Vienna, Anton-von-Webern-Platz 1, 1030 Vienna, Austria.

Physical modeling may be used to simulate the motion of a vibrating string under frictional excitation by a bow. This study compares the measured transient behavior of a bowed string with predictions from a physics-based simulation that assumes a finite-width bow, incorporates bow-hair compliance, considers the string's torsional motion, and utilizes an elasto-plastic friction model. The model is first evaluated by comparing simulated Guettler playability diagrams to a measured diagram obtained from a robot arm bowing a monochord.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!