Renal dysfunction is one of the most common complications of septic injury. One critical contributor to septic injury-induced renal dysfunction is renal vascular dysfunction. Protein palmitoylation serves as a novel regulator of vascular function. Here, we examined whether palmitoyl acyltransferase (PAT)-DHHC21 contributes to septic injury-induced renal dysfunction through regulating renal hemodynamics. Multispectral optoacoustic imaging showed that cecal ligation and puncture (CLP)-induced septic injury caused impaired renal excretion, which was improved in DHHC21 functional deficient (Zdhhc21) mice. DHHC21 deficiency attenuated CLP-induced renal pathology, characterized by tissue structural damage and circulating injury markers. Importantly, DHHC21 loss-of-function led to better-preserved renal perfusion and oxygen saturation after CLP. The CLP-caused reduction in renal blood flow was also ameliorated in Zdhhc21 mice. Next, CLP promoted the palmitoylation of vascular α1-adrenergic receptor (α1AR) and the activation of its downstream effector ERK, which were blunted in Zdhhc21 mice. Vasoreactivity analysis revealed that renal arteries from Zdhhc21 mice displayed reduced constriction response to α1AR agonist phenylephrine compared to those from wild-type mice. Consistently, inhibiting PATs with 2-bromopalmitate caused a blunted vasoconstriction response to phenylephrine in small arteries isolated from human kidneys. Therefore, DHHC21 contributes to impaired renal perfusion and function during septic injury via promoting α1AR palmitoylation-associated vasoconstriction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159935 | PMC |
http://dx.doi.org/10.1038/s41598-021-89983-x | DOI Listing |
Commun Biol
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.
The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.
View Article and Find Full Text PDFZhonghua Nei Ke Za Zhi
January 2025
Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China.
A 65-year-old male was admitted to Peking Union Medical College Hospital. The patient had intermittent fever for 2 months with a maximum body temperature of 39.3 ℃ and elevated serum creatinine levels for 1 week.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008.
Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease (CKD) caused by various etiologies. It is characterized by the persistent deposition of extracellular matrix, leading to renal tissue damage and impaired renal function, and ultimately progressing to kidney failure. Current clinical treatments for CKD mainly focus on managing the primary diseases, with no specific drugs targeting renal fibrosis.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, China.
Pyroptosis is a form of programmed cell death triggered by inflammatory caspases, dependent on the gasdermin (GSDM) family proteins forming membrane pores in the plasma membrane, with GSDM proteins serving as the executors of pyroptosis. This process can activate a robust inflammatory response through a cascade effect. Sepsis-associated acute kidney injury (SA-AKI) is a classical inflammatory disease with no specific therapeutic drug available.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Health Promotion and Health Education, College of Education, National Taiwan Normal University, Taipei, Taiwan.
Background: Chronic kidney disease (CKD) imposes a significant global health and economic burden, impacting millions globally. Despite its high prevalence, public awareness and understanding of CKD remain limited, leading to delayed diagnosis and suboptimal management. Traditional patient education methods, such as 1-on-1 verbal instruction or printed brochures, are often insufficient, especially considering the shortage of nursing staff.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!