Regulation of Perineuronal Nets in the Adult Cortex by the Activity of the Cortical Network.

J Neurosci

Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Sorbonne Universités, Paris, 75005, France

Published: July 2021

Perineuronal net (PNN) accumulation around parvalbumin-expressing (PV) inhibitory interneurons marks the closure of critical periods of high plasticity, whereas PNN removal reinstates juvenile plasticity in the adult cortex. Using targeted chemogenetic approaches in the adult mouse visual cortex, we found that transient inhibition of PV interneurons, through metabotropic or ionotropic chemogenetic tools, induced PNN regression. EEG recordings indicated that inhibition of PV interneurons did not elicit unbalanced network excitation. Likewise, inhibition of local excitatory neurons also induced PNN regression, whereas chemogenetic excitation of either PV or excitatory neurons did not reduce the PNN. We also observed that chemogenetically inhibited PV interneurons exhibited reduced PNN compared with their untransduced neighbors, and confirmed that single PV interneurons express multiple genes enabling individual regulation of their own PNN density. Our results indicate that PNN density is regulated in the adult cortex by local changes of network activity that can be triggered by modulation of PV interneurons. PNN regulation may provide adult cortical circuits with an activity-dependent mechanism to control their local remodeling. The perineuronal net is an extracellular matrix, which accumulates around individual parvalbumin-expressing inhibitory neurons during postnatal development, and is seen as a barrier that prevents plasticity of neuronal circuits in the adult cerebral cortex. We found that transiently inhibiting parvalbumin-expressing or excitatory cortical neurons triggers a local decrease of perineuronal net density. Our results indicate that perineuronal nets are regulated in the adult cortex depending on the activity of local microcircuits. These findings uncover an activity-dependent mechanism by which adult cortical circuits may locally control their plasticity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8265812PMC
http://dx.doi.org/10.1523/JNEUROSCI.0434-21.2021DOI Listing

Publication Analysis

Top Keywords

adult cortex
16
perineuronal net
12
pnn
9
perineuronal nets
8
adult
8
parvalbumin-expressing inhibitory
8
inhibition interneurons
8
induced pnn
8
pnn regression
8
excitatory neurons
8

Similar Publications

Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.

View Article and Find Full Text PDF

This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.

View Article and Find Full Text PDF

A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.

View Article and Find Full Text PDF

Background And Purpose: This study aims to investigate the longitudinal changes in translocator protein (TSPO) following stroke in different brain regions and potential associations with chronic brain infarction.

Methods: Twelve patients underwent SPECT using the TSPO tracer 6-Chloro-2-(4'-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide, as well as structural MRI, at 10, 41, and 128 days (median) after ischemic infarction in the middle cerebral artery. TSPO expression was measured in lesional (MRI lesion and SPECT lesion), connected (pons and ipsilesional thalamus), and nonconnected (ipsilesional cerebellum and contralesional occipital cortex) regions.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!