Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8425617PMC
http://dx.doi.org/10.2215/CJN.04500421DOI Listing

Publication Analysis

Top Keywords

mrna covid-19
4
covid-19 vaccine
4
vaccine people
4
people kidney
4
kidney failure
4
failure hope
4
hope prudence
4
prudence warranted
4
mrna
1
vaccine
1

Similar Publications

Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice.

Biomaterials

December 2024

Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA. Electronic address:

The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination.

View Article and Find Full Text PDF

Dual-Mechanism mRNA Delivery via Fluorinated-Sorbitol Polyplexes: Enhancing Cellular Uptake and Endosomal Escape for COVID-19 Vaccination.

Adv Healthc Mater

December 2024

Department of Biomedical Sciences, Biomedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, 322 Seoyang-ro, Hwasun, 58128, Republic of Korea.

Advancements in mRNA delivery nanoparticles have significantly improved the potential for treating challenging diseases. Due to the inherent immunogenicity and rapid degradation of mRNA, specialized nanoparticles are required for efficient intracellular uptake, endosomal escape, and protection from lysosomal degradation. Although current methods enable transgene expression but achieving a balance between efficiency and toxicity remains challenging.

View Article and Find Full Text PDF

Booster COVID-19 mRNA vaccination ameliorates impaired B-cell but not T-cell responses in older adults.

Front Immunol

December 2024

Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.

Age-associated differences in the effect of repetitive vaccination, particularly on memory T-cell and B-cell responses, remain unclear. While older adults (aged ≥65 years) exhibited enhanced IgG responses following COVID-19 mRNA booster vaccination, they produced fewer spike-specific circulating follicular helper T cells-1 than younger adults. Similarly, the cytotoxic CD8 T-cell response remained diminished with reduced PD-1 expression even after booster vaccination compared with that in younger adults, suggesting impaired memory T-cell activation in older adults.

View Article and Find Full Text PDF

Background: This study aimed to investigate the epidemiological characteristics and outcomes of myocarditis/pericarditis after BNT162b2 vaccination in Korean adolescents.

Methods: This was a retrospective cohort analysis of adolescents aged 12-19 years old diagnosed with myocarditis/pericarditis within 42 days of BNT162b2 mRNA vaccination. All reported cases were investigated by city or government epidemiologists and the diagnostic certainty and causality was determined by the Korea Disease Control and Prevention Agency's Adverse Event Following Immunization Expert Advisory Committee according to the modified version of Brighton Collaboration Myocarditis/Pericarditis Working group's case definitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!