In this study, a biocompatible folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules (FA-RCNCs) were designed and prepared via sonochemical method for targeted delivery and controlled release of hydrophobic drugs. The shell of FA-RCNCs was cross-linked by disulfide bonds formed from hydrosulfuryl groups on the thiolated carboxymethylcellulose (TCMC) and encapsulated hydrophobic drug dispersed in the oil phase into nanocapsules. Moreover, the size and morphology of drug loaded FA-RCNCs were characterized by DLS, SEM and CLSM which indicated that the synthesized nanocapsules have suitable size range and excellent stability for circulating in the bloodstream. The drug release rate of FA-RCNCs could be controlled by adjusting their sizes and shell thickness, which could be dominated by the concentration of TCMC and sonochemical conditions. Furthermore, the obtained FA-RCNCs could be ingested into Hela cells via folate-receptor (FR)-mediated endocytosis and quickly release drugs under reductive environment, which demonstrated that FA-RCNCs could become potential hydrophobic drugs carries for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118174DOI Listing

Publication Analysis

Top Keywords

folate-decorated reductive-responsive
8
reductive-responsive carboxymethylcellulose-based
8
carboxymethylcellulose-based nanocapsules
8
hydrophobic drugs
8
fa-rcncs
6
sonochemical preparation
4
preparation folate-decorated
4
nanocapsules
4
nanocapsules targeted
4
drug
4

Similar Publications

In this study, a biocompatible folate-decorated reductive-responsive carboxymethylcellulose-based nanocapsules (FA-RCNCs) were designed and prepared via sonochemical method for targeted delivery and controlled release of hydrophobic drugs. The shell of FA-RCNCs was cross-linked by disulfide bonds formed from hydrosulfuryl groups on the thiolated carboxymethylcellulose (TCMC) and encapsulated hydrophobic drug dispersed in the oil phase into nanocapsules. Moreover, the size and morphology of drug loaded FA-RCNCs were characterized by DLS, SEM and CLSM which indicated that the synthesized nanocapsules have suitable size range and excellent stability for circulating in the bloodstream.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!