A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. | LitMetric

Bacterial nanocellulose production is gaining popularity owing to its applications in food, cosmetics and medical industry. Three Acetobacter strains isolated from organic waste and fermented tea were identified using 16S rDNA sequencing and their ability to produce nanocellulose was studied. Strain isolated from Kombucha has 99% homology with Komagataeibacter rhaeticus DSM 16663 T. This is the first report where nanocellulose productivity of this strain with different carbon sources such as glucose, glycerol, fructose and sucrose has been studied. 1% glycerol was found to be optimal concentration, with up to 69% of the utilized carbon converted to nanocellulose. Maximum productivity of 4.5 g/L of bacterial nanocellulose was obtained. Average nitrogen and phosphorus consumption rate was 45 mg/L/day each. Physical properties such as crystallinity, fibril dimensions, and glass transition temperature were studied. Bacterial cellulose was 80% crystalline when glycerol and glucose were used as carbon source and 73% for fructose and sucrose. Renewable materials such as bacterial cellulose with their unique properties are the future for applications in the field of cosmetics, composite and wound care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118176DOI Listing

Publication Analysis

Top Keywords

nanocellulose production
8
isolated organic
8
organic waste
8
bacterial nanocellulose
8
fructose sucrose
8
bacterial cellulose
8
nanocellulose
5
characterization nanocellulose
4
production strains
4
strains komagataeibacter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!