A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Restructured Mitochondrial-Nuclear Interaction in Plasmodium falciparum Dormancy and Persister Survival after Artemisinin Exposure. | LitMetric

Artemisinin and its semisynthetic derivatives (ART) are fast acting, potent antimalarials; however, their use in malaria treatment is frequently confounded by recrudescences from bloodstream parasites that enter into and later reactivate from a dormant persister state. Here, we provide evidence that the mitochondria of dihydroartemisinin (DHA)-exposed persisters are dramatically altered and enlarged relative to the mitochondria of young, actively replicating ring forms. Restructured mitochondrial-nuclear associations and an altered metabolic state are consistent with stress from reactive oxygen species. New contacts between the mitochondria and nuclei may support communication pathways of mitochondrial retrograde signaling, resulting in transcriptional changes in the nucleus as a survival response. Further characterization of the organelle communication and metabolic dependencies of persisters may suggest strategies to combat recrudescences of malaria after treatment. The major first-line treatment for malaria, especially the deadliest form caused by Plasmodium falciparum, is combination therapy with an artemisinin-based drug (ART) plus a partner drug to assure complete cure. Without an effective partner drug, ART administration alone can fail because of the ability of small populations of blood-stage malaria parasites to enter into a dormant state and survive repeated treatments for a week or more. Understanding the nature of parasites in dormancy (persisters) and their ability to wake and reestablish actively propagating parasitemias (recrudesce) after ART exposure may suggest strategies to improve treatment outcomes and counter the threats posed by parasites that develop resistance to partner drugs. Here, we show that persisters have dramatically altered mitochondria and mitochondrial-nuclear interactions associated with features of metabolic quiescence. Restructured associations between the mitochondria and nuclei may support signaling pathways that enable the ART survival responses of dormancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262848PMC
http://dx.doi.org/10.1128/mBio.00753-21DOI Listing

Publication Analysis

Top Keywords

restructured mitochondrial-nuclear
8
plasmodium falciparum
8
malaria treatment
8
parasites enter
8
persisters dramatically
8
dramatically altered
8
mitochondria nuclei
8
nuclei support
8
drug art
8
partner drug
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!