Background: Hepatocyte transplantation (HTx) is regarded as a potential treatment modality for various liver diseases including acute liver failure. We developed a preclinical pig model to evaluate if HTx could safely support recovery from liver function impairment after partial hepatectomy.
Methods: Pigs underwent partial hepatectomy with reduction of the liver volume by 50% to induce a transient but significant impairment of liver function. Thereafter, 2 protocols for HTx were evaluated and compared to a control group receiving liver resection only (group 1, n = 5). Portal pressure-controlled HTx was performed either immediately after surgery (group 2, n = 6) or 3 days postoperatively (group 3, n = 5). In all cases, liver regeneration was monitored by conventional laboratory tests and the novel noninvasive maximum liver function capacity (LiMAx) test with a follow-up of 4 weeks.
Results: Partial hepatectomy significantly impaired liver function according to conventional liver function tests as well as LiMAx in all groups. A mean of 4.10 ± 1.1 × 108 and 3.82 ± 0.7 × 108 hepatocytes were transplanted in groups 2 and 3, respectively. All animals remained stable with respect to vital parameters during and after HTx. The animals in group 2 showed enhanced liver regeneration as observed by mean postoperative LiMAx values (621.5 vs. 331.3 μg/kg/h on postoperative day 7; p < 0.001) whereas HTx in group 3 led to a significant increase in mean liver-specific coagulation factor VII (112.2 vs. 54.0% on postoperative day 7; p = 0.003) compared to controls (group 1), respectively. In both experimental groups, thrombotic material was observed in the portal veins and pulmonary arteries on histology, despite the absence of clinical symptoms.
Conclusion: HTx can be performed safely and effectively immediately after a partial (50%) hepatectomy as well as 3 days postoperatively, with comparable results regarding the enhancement of liver function and regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000516690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!