Branching development of early post-implantation human embryonic-like tissues in 3D stem cell culture.

Biomaterials

Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. Electronic address:

Published: August 2021

Human embryonic stem cells (hESCs) have the intrinsic capacity to self-organize and generate patterned tissues. In vitro models that coax hESCs to form embryonic-like structures by modulating physical environments and priming with chemical signals have become a powerful tool for dissecting the regulatory mechanisms underlying early human development. Here we present a 3D suspension culture system of hESCs that can generate post-implantation, pre-gastrulation embryonic-like tissues in an efficient and controllable manner. The efficiency of the development of asymmetric tissues, which mimic the post-implantation, pre-gastrulation amniotic sac, was about 50% in the 3D suspension culture. Quantitative imaging profiling and unsupervised trajectory analysis revealed that hESC aggregates first entered into a transitional stage expressing Brachyury (or T), before their development branched into different paths to develop into asymmetric embryonic-like tissues, amniotic-like tissues, and mesodermal-like tissues, respectively. Moreover, the branching developmental trajectory of embryonic-like structures was affected by the initial cell seeding density or cluster size of hESCs. A higher percentage of amniotic-like tissues was observed under a small initial cell seeding density of hESCs. Conversely, a large initial cell seeding density of hESCs promoted the development of mesodermal-like tissues. Intermediate cell seeding densities of hESCs in the 3D suspension culture promoted the development of asymmetric embryonic-like tissues. Our results suggest that hESCs have the intrinsic capability to sense the initial cell population size, which in turn regulates their differentiation and self-organization into different embryonic-like tissues. Our 3D suspension culture thus provides a promising experimental tool to study the interplay between tissue topology and self-organization and progressive embryonic development using in vitro hESC-based models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8325636PMC
http://dx.doi.org/10.1016/j.biomaterials.2021.120898DOI Listing

Publication Analysis

Top Keywords

embryonic-like tissues
20
suspension culture
16
initial cell
16
cell seeding
16
seeding density
12
tissues
11
hescs
8
hescs intrinsic
8
embryonic-like structures
8
post-implantation pre-gastrulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!