Proteomics analysis reveals the importance of transcriptional regulator slyA in regulation of several physiological functions in Aeromonas hydrophila.

J Proteomics

Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Published: July 2021

SlyA is a well-known transcription factor that plays important roles in the regulation of diverse physiological functions including virulence and stress response in various bacterial species. The biological effects of slyA have species-specific characteristics. In this study, a phenotype assay showed that slyA gene deletion in Aeromonas hydrophila (ahslyA) decreased biofilm formation capability but did not affect bacterial hemolytic activity or acid stress response. The differentially expressed proteins between ΔahslyA and wild-type strains were compared by label-free quantitative proteomics to further understand the effects of AhSlyA on biological functions. Bioinformatics assays showed that ΔahslyA may be involved in the regulation of several intracellular metabolic pathways such as galactose metabolism, arginine biosynthesis, and sulfur metabolism. A further phenotypic assay confirmed that AhSlyA plays an important role in the regulation of sulfur and phosphate metabolism. Moreover, ahslyA also directly or indirectly regulated at least eight outer membrane proteins involved in the maintenance of cell permeability. Overall, the results provide insights into the functions of ahslyA and demonstrate its importance in A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, we compared the DEPs between the transcriptional regulator slyA-deleted and the wild-type A. hydrophila strains using a label-free quantitative proteomics method. The bioinformatics analysis showed that slyA may be involved in the regulation of several metabolic pathways. Subsequent phenotype and growth assays confirmed that ΔahslyA affected sulfur and phosphate metabolism, and OM permeability. Finally, a ChIP-PCR assay further confirmed that AhSlyA directly binds to the promoters of several candidate genes, including sulfur metabolism-related genes. These results indicated that slyA plays an important regulatory role in pleiotropic physiological functions of A. hydrophila, and these functions may be different from those identified in previous reports from other bacterial species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2021.104275DOI Listing

Publication Analysis

Top Keywords

physiological functions
12
transcriptional regulator
8
aeromonas hydrophila
8
stress response
8
bacterial species
8
label-free quantitative
8
quantitative proteomics
8
involved regulation
8
metabolic pathways
8
assay confirmed
8

Similar Publications

Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function.

Am J Physiol Heart Circ Physiol

January 2025

Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Bratislava, Slovakia.

Cholinesterase (ChE) inhibitors are under consideration to be used in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions.

View Article and Find Full Text PDF

With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter- and intra-specific), pollinators and insect herbivores on plant performance (i.e.

View Article and Find Full Text PDF

Aging is an inevitable physiological process in organisms, and the development of tumors is closely associated with cellular senescence. This article initially examines the role of cellular senescence in tumorigenesis, emphasizing the correlation between telomere length-a marker of cellular senescence-and tumor risk. Concurrently, the study explores the expression levels of senescence-associated markers, such as p16, p53, and mTOR, in the context of tumor development.

View Article and Find Full Text PDF

In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.

Photosynth Res

January 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.

View Article and Find Full Text PDF

Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!