Rodent dams seek and gather scattered pups back to the nest (pup retrieval), an essential aspect of maternal care. Systematic analysis of the dynamic sequences of goal-related movements that comprise the entire behavioural sequence, which would be ultimately essential for understanding the underlying neurobiology, is not well-characterized. Here, we present such analysis across 3 days in alloparental female mice (Surrogates or Sur) of two genotypes; Mecp2 (Het), a female mouse model for Rett syndrome and their wild type (WT) siblings. We analysed CBA/CaJ and C57BL/6J WT surrogates for within-strain comparisons. Frame-by-frame analysis over different phases was performed manually using DataVyu software. We previously showed that surrogate Het are inefficient at pup retrieval, by end-point analysis such as latency index and errors. Here, the sequence of searching, pup-approach and successful retrieval streamlines over days for WT, while Het exhibits variations in this pattern. Goal-related movements between Het and WT are similar in other phases, suggesting context-driven atypical patterns in Het during the pup retrieval phase. We identified proximal pup approach and pup grooming as atypical tactile interactions between pups and Het. Day-by-day analysis showed dynamic changes in goal-related movements in individual animals across genotypes and strains. Overall, our approach (1) highlights natural variation in individual mice on different days, (2) establishes a "gold-standard" manually curated dataset to help build behavioural repertoires using machine learning approaches, and (3) suggests atypical tactile sensory processing and possible regression in a female mouse model for Rett syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450021PMC
http://dx.doi.org/10.1111/ejn.15327DOI Listing

Publication Analysis

Top Keywords

female mouse
12
mouse model
12
model rett
12
rett syndrome
12
pup retrieval
12
goal-related movements
12
systematic analysis
8
analysis dynamic
8
atypical tactile
8
het
6

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

IL-35 modulates Tfh2 and Tfr cell balance to alleviate allergic rhinitis.

Inflamm Res

January 2025

Department of Otolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.

Background: Allergic rhinitis (AR) represents a persistent inflammatory condition affecting the upper respiratory tract, characterized by abnormal initiation of the immunoglobulin E (IgE)-mediated cascade. Follicular helper T (Tfh) cells and regulatory T (Tfr) cells are pivotal in orchestrating the development of IgE production in AR patients. IL-35, an anti-inflammatory cytokine, secreted by various cellular subpopulations.

View Article and Find Full Text PDF

Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!