[This corrects the article DOI: 10.1371/journal.pone.0240398.].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158988 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252693 | PLOS |
Eur Phys J E Soft Matter
January 2025
Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Bavaria, Germany.
We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced.
View Article and Find Full Text PDFPLOS Digit Health
January 2025
Social Physics and Complexity (SPAC) Lab, LIP-Laboratory for Instrumentation and Experimental Particle Physics, Lisboa, Portugal.
Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
[This corrects the article DOI: 10.1016/j.csbj.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Particle Technology (LFG), Department of Chemical and Biological, Engineering (CBI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058, Erlangen, Germany.
Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CD, Delft, The Netherlands.
Laboratory experiments were performed to investigate the attenuation of progressive deep-water waves by a mono-layer of loose- and close-packed floating spheres. We measured the decay distance of waves having different incident wave frequency and steepness. The attenuation of waves was strong if the surface concentration of particles was close-packed, with the decay distance being shorter for incident waves with higher frequency and steepness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!