Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Falling leaves flutter from side to side due to passive and intrinsic fluid-body coupling. Exploiting the dynamics of passive fluttering could lead to fresh perspectives for the locomotion and manipulation of thin, planar objects in fluid environments. Here, we show that the time-varying density distribution within a thin, planar body effectively elicits minimal momentum control to reorient the principal flutter axis and propel itself via directional fluttery motions. We validated the principle by developing a swimming leaf with a soft skin that can modulate local buoyancy distributions for active flutter dynamics. To show generality and field applicability, we demonstrated underwater maneuvering and manipulation of adhesive and oil-skimming sheets for environmental remediation. These findings could inspire future intelligent underwater robots and manipulation schemes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.abe0637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!