Grasping with kirigami shells.

Sci Robot

Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA

Published: May 2021

The ability to grab, hold, and manipulate objects is a vital and fundamental operation in biological and engineering systems. Here, we present a soft gripper using a simple material system that enables precise and rapid grasping, and can be miniaturized, modularized, and remotely actuated. This soft gripper is based on kirigami shells-thin, elastic shells patterned with an array of cuts. The kirigami cut pattern is determined by evaluating the shell's mechanics and geometry, using a combination of experiments, finite element simulations, and theoretical modeling, which enables the gripper design to be both scalable and material independent. We demonstrate that the kirigami shell gripper can be readily integrated with an existing robotic platform or remotely actuated using a magnetic field. The kirigami cut pattern results in a simple unit cell that can be connected together in series, and again in parallel, to create kirigami gripper arrays capable of simultaneously grasping multiple delicate and slippery objects. These soft and lightweight grippers will have applications in robotics, haptics, and biomedical device design.

Download full-text PDF

Source
http://dx.doi.org/10.1126/scirobotics.abd6426DOI Listing

Publication Analysis

Top Keywords

soft gripper
8
remotely actuated
8
kirigami cut
8
cut pattern
8
gripper
5
kirigami
5
grasping kirigami
4
kirigami shells
4
shells ability
4
ability grab
4

Similar Publications

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF
Article Synopsis
  • The study showcases improvements in electrohydrodynamic (EHD) pumps alongside a new 3D-printable organohydrogel designed for soft robotics.
  • Using advanced digital light processing (DLP) technology, the researchers created a manifold pump array that can generate 90.2 kPa of pressure and deliver a flow rate of 800 mL per minute, far exceeding the capabilities of traditional EHD systems.
  • The novel organohydrogel developed has a low swelling ratio, high stretchability, and durability under stress, making it ideal for dynamic applications in soft robotics, bioengineering, and vertical farming.
View Article and Find Full Text PDF

Research on the operational properties of the soft gripper pads.

Sci Rep

December 2024

Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.

Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.

View Article and Find Full Text PDF

Decision-making based on environmental cues is a crucial feature of autonomous systems. Embodying this feature in soft robots poses nontrivial challenges on both hardware and software that can undermine the simplicity and autonomy of such devices. Existing pneumatic electronics-free soft robots have so far mostly been approached by using system fluidic circuit architectures analogous to digital electronics.

View Article and Find Full Text PDF

Recent Advances in 4D Printing: A Review of Current Smart Materials, Technologies, and Drug Delivery Systems.

Curr Pharm Des

December 2024

Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India.

Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!