Exosomal glycoproteins play important roles in many physiological and pathological functions. Herein, we developed a dual labeling strategy based on a protein-specific aptamer tagging and metabolic glycan labeling for visualizing glycosylation of specific proteins on exosomes. The glycosylation of exosomal PD-L1 (exoPD-L1) was imaged in situ using intramolecular fluorescence resonance energy transfer (FRET) between fluorescent PD-L1 aptamers bound on exoPD-L1 and fluorescent tags on glycans introduced via metabolic glycan labeling. This method enables in situ visualization and biological function study of exosomal protein glycosylation. Exosomal PD-L1 glycosylation was confirmed to be required in interaction with PD-1 and participated in inhibiting of CD8 T cell proliferation. This is an efficient and non-destructive method to study the presence and function of exosomal protein-specific glycosylation in situ, which provides a powerful tool for exosomal glycoproteomics research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202103696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!