Ecofriendly exploration of Arjun bark (Terminalia arjuna) is a herbal natural colorant for cotton dyeing. This is because the demand for natural dyes has been increased worldwide due to their therapeutic usage and other food, textiles, agriculture, engineering, and medical applications. Therefore, this study has been carried out due to the isolation of colorant from Arjun bark in an acidified methanolic medium after exposure to ultrasonic rays up to 60 min. Additionally, using bio-mordants, it has been found that the application of 10% of Zeera (Cuminum cyminum) extract as meta-bio-mordant, 3% of Ilaichi (Elettaria cardamomum) extract as meta-bio-mordant, and10 % of Harmal (Peganum harmala) and Neem (Azadirachta indica) extract as meta-bio-mordants has given excellent color strength. These bio-mordants have not only made the coloration process more eco-friendly, viable, and greener, but also improved color strength with various tonal effects from red to reddish brown shades. Thus, it has been found that ultrasonic treatment as an environment-friendly tool has not only enhanced the color strength of natural colorant isolated from Arjun bark onto the cotton fabric under mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14536-8DOI Listing

Publication Analysis

Top Keywords

natural colorant
12
arjun bark
12
color strength
12
cotton dyeing
8
extract meta-bio-mordant
8
environmental friendly
4
friendly sustainable
4
sustainable application
4
application plant-based
4
plant-based mordants
4

Similar Publications

Nasal rehabilitation following basal cell carcinoma (BCC) and radiotherapy presents significant challenges due to the intricate balance between aesthetic and functional restoration. This case report discusses the rehabilitation of a 73-year-old male who underwent surgical excision and radiotherapy for BCC located on the left ala of the nose. Post-treatment, the patient experienced dissatisfaction with his facial appearance, negatively impacting his quality of life.

View Article and Find Full Text PDF

Introduction: The non-thermal plasma (NTP) technique has been suggested as a sustainable horticultural practice to promote biomass accumulation, nutrient uptake, N metabolism, and disease prevention in plants. In particular, the potentiality of this technique to promote the natural accumulation of nutrients into plants deserve to be explored as input saving is strongly recommended in the horticultural sector.

Methods: The nutrient solution supplied to a red coloured variety of rocket salad [ (L.

View Article and Find Full Text PDF

Morphological variation of Ficus johannis subsp. afghanistanica (Warb.) Browicz in Sistan-va-Baluchestan province, Iran.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, Hassa, 31700, Hatay, Türkiye.

Background: Ficus johannis subsp. afghanistanica (Warb.) Browicz is an important plant species belonging to the Moraceae family and is part of the Ficus genus.

View Article and Find Full Text PDF

Aurophilic interaction-based aggregation of gem-digold(I) aryls towards high spin-orbit coupling and strong phosphorescence.

Nat Commun

January 2025

Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.

Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.

View Article and Find Full Text PDF

The synergistic effect of natural guar gum (GG), konjac gum (KGM) and sodium 2-oxopropanoic acid sodium (2-OAS) to designed a novel physical cross-linked three-dimensional network structure GG@2-OAS@KGM as a carrier of active microorganisms for mold and yeast sensitive detection. At the ratio of 6:2:2 (w/w/w), GG@2-OAS@KGM possessed a uniform porous structure. After treatment for 120 h, the hydrogel exhibits higher water holding capacity (WHC, 71.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!