Prion disease is a neurodegenerative disorder with progressive neurologic symptoms and accelerated cognitive decline. The causative protein of prion disease is the prion protein (PrP), and structural transition of PrP from the normal helix rich form (PrP) to the abnormal β-sheet rich form (PrP) occurs in prion disease. While so far numerous therapeutic agents for prion diseases have been developed, none of them are still useful. A fluorinated alcohol, hexafluoro isopropanol (HFIP), is a precursor to the inhalational anesthetic sevoflurane and its metabolites. HFIP is also known as a robust α-helix inducer and is widely used as a solvent for highly aggregated peptides. Here we show that the α-helix-inducing activity of HFIP caused the conformational transformation of the fibrous structure of PrP into amorphous aggregates in vitro. HFIP added to the ScN2a cell medium, which continuously expresses PrP, reduced PrP protease resistance after 24-h incubation. It was also clarified that ScN2a cells are more susceptible to HFIP than any of the cells being compared. Based on these findings, HFIP is expected to develop as a therapeutic agent for prion disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254714 | PMC |
http://dx.doi.org/10.1007/s11064-021-03344-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!