The architectural design of animal structures forms part of an individual's extended phenotype that can be subjected to strong selection pressures. We examined cocoon architectural dimorphism in robin moths (Hyalophora cecropia), which construct multilayered silk-woven cocoons that possess either a 'baggy' or 'compact' morphology. These dimorphic cocoons reflect extended phenotypes that can enable survival during a critical developmental period (pupal stage to adult emergence), with cocoons occurring either sympatrically or as monomorphic groups across different climatic regions in North America. We hypothesized that cocoon dimorphism is related to the cocoon's role as a mediating barrier for moisture. We predicted that the macro- and micro-architectural differences between the cocoon morphs would be consistent with this function. We compared the cocoon morphs in terms of their orientation when spun under natural field conditions, examined how these orientations affected cocoon water absorption under simulated rain trials, and performed material surface tests to compare the hydrophobicity of cocoons. We found that compact cocoons had traits that increased water resistance, as they had significantly greater hydrophobicity than baggy cocoons, because they absorbed less water and released water vapor faster. In contrast, the increased water absorptiveness of baggy cocoons can allow for greater moisture retention, a function related to the prevention of desiccation. Our study suggests that cocoon dimorphism in robin moths reflects distinct architectural syndromes, in which cocoons are spun to optimize either water resistance or retention. These different functions are consistent with strategies that act to respond to uncertain external environmental conditions that an individual might encounter during development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.239780 | DOI Listing |
PLoS One
July 2022
Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan, China.
Sexual dimorphism is seen in many dioecious plant and animal species, which may influence their trophic interactions. The differences in trophic interactions derived from sexual dimorphism in plants may influence herbivorous performance and population dynamics. Both silkworm (Bombyx mori L.
View Article and Find Full Text PDFZootaxa
March 2022
Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan..
The ant genus Monomorium is one of the most species-rich but taxonomically problematic groups in the hyperdiverse subfamily Myrmicinae. An East Asian species, M. triviale Wheeler, produces both reproductive queens and sterile workers via obligate thelytokous parthenogenesis.
View Article and Find Full Text PDFJ Exp Biol
May 2021
Department of Biological Sciences, University of Cincinnati, Rieveschl Hall, 318 College Drive, Cincinnati, OH 45221, USA.
The architectural design of animal structures forms part of an individual's extended phenotype that can be subjected to strong selection pressures. We examined cocoon architectural dimorphism in robin moths (Hyalophora cecropia), which construct multilayered silk-woven cocoons that possess either a 'baggy' or 'compact' morphology. These dimorphic cocoons reflect extended phenotypes that can enable survival during a critical developmental period (pupal stage to adult emergence), with cocoons occurring either sympatrically or as monomorphic groups across different climatic regions in North America.
View Article and Find Full Text PDFSci Rep
January 2021
Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.
Life histories of species may be shaped by nutritional limitations posed on populations. Yet, populations contain individuals that differ according to sex and life stage, each of which having different nutritional demands and experiencing specific limitations. We studied patterns of resource assimilation, allocation and excretion during the growth of the solitary bee Osmia bicornis (two sexes) under natural conditions.
View Article and Find Full Text PDFArthropod Struct Dev
November 2020
Sorbonne Université, CNRS, Institut d'Écologie et des Sciences de l'Environnement, 75005 Paris, France. Electronic address:
As in other Hymenoptera, adult ants cannot secrete silk, unlike the larvae that spin a cocoon prior to metamorphosis. Fisher and Robertson (1999) first showed the existence of a silk gland in the head of adult Melissotarsus beccarii workers, and we confirm this with detailed histology and ultrastructural comparisons of both queens and workers. This African genus exhibits extreme morphological adaptations (legs, head shape and mandibular muscles) for tunnelling behaviour inside living trees, that underlie an obligate mutualism with scale insects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!