A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peel learning for pathway-related outcome prediction. | LitMetric

Peel learning for pathway-related outcome prediction.

Bioinformatics

Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: November 2021

Motivation: Traditional regression models are limited in outcome prediction due to their parametric nature. Current deep learning methods allow for various effects and interactions and have shown improved performance, but they typically need to be trained on a large amount of data to obtain reliable results. Gene expression studies often have small sample sizes but high dimensional correlated predictors so that traditional deep learning methods are not readily applicable.

Results: In this article, we proposed peel learning, a novel neural network that incorporates the prior relationship among genes. In each layer of learning, overall structure is peeled into multiple local substructures. Within the substructure, dependency among variables is reduced through linear projections. The overall structure is gradually simplified over layers and weight parameters are optimized through a revised backpropagation. We applied PL to a small lung transplantation study to predict recipients' post-surgery primary graft dysfunction using donors' gene expressions within several immunology pathways, where PL showed improved prediction accuracy compared to conventional penalized regression, classification trees, feed-forward neural network and a neural network assuming prior network structure. Through simulation studies, we also demonstrated the advantage of adding specific structure among predictor variables in neural network, over no or uniform group structure, which is more favorable in smaller studies. The empirical evidence is consistent with our theoretical proof of improved upper bound of PL's complexity over ordinary neural networks.

Availability And Implementation: PL algorithm was implemented in Python and the open-source code and instruction will be available at https://github.com/Likelyt/Peel-Learning.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502230PMC
http://dx.doi.org/10.1093/bioinformatics/btab402DOI Listing

Publication Analysis

Top Keywords

neural network
16
peel learning
8
outcome prediction
8
deep learning
8
learning methods
8
neural
5
network
5
structure
5
learning pathway-related
4
pathway-related outcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!