A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes. | LitMetric

A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon-germanium nanotubes.

Phys Chem Chem Phys

Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan km 8, Apan, Hidalgo C.P 43920, Mexico.

Published: June 2021

In this work we have studied infinite size silicon-germanium alloy nanotubes of several types, armchair, zigzag and chiral, by theoretical analysis based on density functional theory as implemented in the SIESTA code, which utilizes a linear combination of atomic orbitals and a generalized gradient approximation proposed by Perdew, Burke and Ernzerhof (GGA-PBE) for the exchange and correlation energy. The structures were relaxed until the atomic forces were less than 0.0001 eV Å-1. The electronic band structure, density of states and cohesive energy were then computed; the optical calculation was run in between 0 and 6 eV, with a broadening of 0.05 eV. The obtained results exhibit the deformation of the structure on the surface, which seems to be related to its stability. The armchair and zigzag tubes are direct band gap semiconductor materials, while chiral nanotubes shift from indirect to direct bandgap semiconductors, depending on their diameter size. Likewise, the bandgap depends on the diameter of the SiGe nanotubes (SiGeNTs). We have associated the absorption curves and the density of states through Van Hove singularities. In summary, our results on the structural and electronic properties of SiGeNTs elucidate their possible applications in thermoelectrics, photovoltaics and nanoelectronics, while the possibility of associating the absorption curves with the density of states provides a method of characterization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp00519gDOI Listing

Publication Analysis

Top Keywords

armchair zigzag
12
density states
12
zigzag chiral
8
absorption curves
8
curves density
8
theoretical study
4
study electronic
4
electronic structural
4
structural optical
4
optical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!