A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly stable graphene oxide composite nanofiltration membrane. | LitMetric

Highly stable graphene oxide composite nanofiltration membrane.

Nanoscale

Xiamen University Center for Membrane Application and Advancement, College of Materials, Xiamen University, Xiamen 361005, Fujian, China.

Published: June 2021

Graphene oxide (GO) based membranes are promising for advanced nanofiltration in water treatments but there is a need to improve water flux and membrane stability. Although the interlayer distance of GO membranes can be expanded using intercalants to improve permeability, achieving uniform intercalation without the added complication of water-induced swelling is challenging. Herein, we report the fabrication of GO hybrid lamellar membranes with controllable layer structures to achieve high performance in nanofiltration. The interlayer spacing of the GO hybrid membrane is regulated using TiO intercalants of different sizes, while the stability of GO membranes is enhanced by encapsulating with polyethyleneimine (PEI). The optimal composite membrane delivers a pure water-flux up to 26.0 L m h bar with a 99.9% rejection of methylene blue and eosin under an ultra-low pressure nanofiltration condition. More importantly, the composite membrane sustains good cycling stability after 5 filtration cycles of dye, which enables the potential industrial application in realizing ultra-stable GO based membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr01823jDOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
based membranes
8
composite membrane
8
membrane
5
membranes
5
highly stable
4
stable graphene
4
oxide composite
4
nanofiltration
4
composite nanofiltration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!