Transfer learning has demonstrated its potential in natural language processing tasks, where models have been pre-trained on large corpora and then tuned to specific tasks. We applied pre-trained transfer models to a Spanish biomedical document classification task. The main goal is to analyze the performance of text classification by clinical specialties using state-of-the-art language models for Spanish, and compared them with the results using corresponding models in English and with the most important pre-trained model for the biomedical domain. The outcomes present interesting perspectives on the performance of language models that are pre-trained for a particular domain. In particular, we found that BioBERT achieved better results on Spanish texts translated into English than the general domain model in Spanish and the state-of-the-art multilingual model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI210184 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
Proc Natl Acad Sci U S A
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFJMIR AI
January 2025
Department of Radiology, Children's National Hospital, Washington, DC, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!